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Abstract. Let M be a manifold and N a 1-dimensional manifold. Assuming r 6=
dim(M) + 1, we show that any nontrivial homomorphism ρ : Diffr

c(M) → Homeo(N)
has a standard form: necessarily M is 1-dimensional, and there are countably many
embeddings φi : M → N with disjoint images such that the action of ρ is conjugate (via
the product of the φi) to the diagonal action of Diffr

c(M) on M ×M × ... on
⋃

i φi(M),
and trivial elsewhere. This solves a conjecture of Matsumoto. We also show that the
groups Diffr

c(M) have no countable index subgroups.

1. Introduction

Let Diffrc(M) denote the identity component (in the compact-open Cr topology) of the
group of compactly supported Cr diffeomorphisms of a manifold M , for 0 ≤ r ≤ ∞. These
groups are locally contractible, so in fact Diffrc(M) agrees with the group of diffeomorphisms
which are isotopic to the identity through a compactly supported isotopy. When we speak
of Diffr(M), we assume that manifolds admit a Cr structure, and a metric structure in the
C0 case, but are otherwise arbitrary. In this paper, we prove the following statement.

Theorem 1.1. Let M be a connected manifold, and suppose that ρ : Diffrc(M) →
Homeo(N) is a nontrivial homomorphism, where N = S1 or N = R, r 6= dim(M) + 1.
Then dim(M) = 1 and there are countably many disjoint embeddings φi : M → N such
that ρ(g)|φi(M) = φigφ

−1
i and N −

⋃
i φi(M) is globally fixed by the action.

This proves [12, Conjecture 1.3] and generalizes works of Mann [8], Militon [13] and
Matsumoto [12], but with an independent proof. Matsumoto’s work [12] proves an analogous
result when the target is Diff1(N) using rigidity theorems of [3] for solvable affine subgroups
of Diff1(R). This generalized [8], which proved the result for homomorphisms to Diff2(N)
using Kopell’s lemma. Militon [13] studies homomorphisms where the source is the group
of homeomorphisms of M . Our proof here is comparatively short, and is self-contained
modulo the standard but difficult result that Diffrc(M), for r 6= dim(M) + 1 is a simple
group, due to Anderson, Mather and Thurston [1, 10, 11, 18]. Whether simplicity holds for
r = dim(M) + 1 is an open question; this is responsible for our restrictions on dimension
in the statement.

Theorem 1.1 is already known in the case where ρ is assumed to be continuous; it is
a consequence of the orbit classification theorem of [5], and was likely known to others
before. In the case where the target is the group of smooth diffeomorphisms of N , this also
follows from work of Hurtado [6] who proves additionally that any such homomorphism is
necessarily (weakly) continuous. Here we make no assumptions on continuity, however, our
proof suggests that diffeomorphism groups exhibit “automatic continuity”–like properties.
Specifically, we show the following small index property.
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Theorem 1.2 (The small index property of Diffrc(M)). If r 6= dim(M) + 1, then Diffrc(M)
has no proper countable index subgroup. Equivalently, Diffrc(M) has no nontrivial homo-
morphism to the permutation group S∞.

This is in stark contrast with the case for finite dimensional Lie groups, where we have
the following.

Theorem 1.3 (Thomas [17] and Kallman [7]). There is an injective homomorphism
SLn(R)→ S∞.

Thus, one consequence of Theorem 1.2 and 1.3 is that there is no nontrivial homo-
morphism from Diffrc(M) into a linear group. Of course, this is nearly immediate if one
considers only continuous homomorphisms, since Diffrc(M) is infinite dimensional, and one
may simply quote the invariance of domain theorem.

If G is a group with a non-open subgroup H of countable index, then the action of
G on the coset space G/H gives a discontinuous homomorphism to S∞. This is one of
very few known general recipes for producing discontinuous group homomorphisms (see
[16]), so gives some (weak) evidence that Diffrc(M) might have the automatic continuity
property already known to hold for Homeo(M) by [9]. Automatic continuity also holds for
homomorphisms between groups of smooth diffeomorphisms by work of Hurtado [6].

Theorem 1.1 also gives new examples of left orderable groups that do not act on the
line. It is a well known fact that any countable group with a left-invariant total order
admits a faithful homomorphism to Homeo+(R). For r > 0, the groups Diffrc(Rn) for r > 0
are known to be left-orderable: the Thurston stability theorem [19] implies that they are
locally indicable (any finitely generated subgroup surjects to Z), which implies that they
are left-orderable by the Burns-Hale theorem ([4], see also [14, Corollary 2]). Thus, we
have the following.

Corollary 1.4. For r > 0, the group Diffrc(Rn) is left-orderable but has no faithful action
on the line or the circle.

The proof of Theorem 1.2 uses the idea from the first step of the proof of automatic
continuity for homeomorphism groups of [9], following Rosendal [15]. This result is then
used to prove Theorem 1.1 by constraining the supports and fixed sets of elements for the
action on N . We are then able to use this information to build a map from M to N .

2. Proof of the small index property

In this section, we prove Theorem 1.2. The proof follows a strategy used in [9] and [15]
used in the proof of automatic continuity of Homeo(M).

Proof. Let M be a manifold and r 6= dim(M) + 1. Let G = Diffrc(M), and for an open
subset U ⊂M , denote by GU the subgroup of Diffrc(M) consisting of maps with compact
support contained in U and isotopic to the identity via an isotopy compactly supported
in U . Thus, GU ∼= Diffrc(U). (Note that Diffrc(U) is locally contractible, and in particular
path connected, for all 0 ≤ r ≤ ∞.)

Suppose for contradiction that H ⊂ G is a countable index subgroup. We will show in
Step 1 that there is some ball U in M such that GU ⊂ H. After this, we will show (Step
2) that H acts transitively on M , thus every x ∈M is contained in some open set Ux such
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that GUx ⊂ H. The fragmentation property states that Diffrc(M) is generated by the union
of such sets GUx (this is true for any collection of sets Ux which form an open cover of M ,
see [2, Ch.1]), so this is sufficient to prove H = G.

Step 1: There is some open ball U in M such that GU ⊂ H.
Let g1H, g2H, . . . denote the left cosets of H. Let B ⊂M be an open ball, and take a

sequence of disjoint balls Bi ⊂ B such that ∪Bi ⊂ B, with diameter tending to 0 and such
that the sequence Bi Hausdorff converges to a point inside B.

We first claim that there exists some j ∈ N and a neighborhood Uj of the identity
element of GBj such that the following holds:

(∗) For every f ∈ Uj , there exists wf ∈ gjH ∩GB such that the restriction
of wf to Uj agrees with f .

Given (∗), then we have w−1
id wf ∈ Hg

−1
j gjH = H, and w−1

id wf restricts to f on Bj . This
shows that every element in Uj agrees with the restriction of an element of H to Bj . Since
Uj is an identity neighborhood of GBj and GBj is by definition connected, Uj generates
GBj and we conclude that every element of GBj agrees with the restriction of an element
of H to Bj .

We prove this claim by contradiction, using a standard diagonal argument. Inductively
choose neighborhoods Ui of the identity in GBi so that for any sequence of diffeomorphisms
fi ∈ Ui, the infinite composition

∏
i fi defines an element of G. is an element of G.

Supposing that our claim is not true for any Uj , then for each i we can find fi ∈ Ui
such that there does not exist any wi ∈ giH supported in B satisfying wi|Bi = f |Bi . Let
w =

∏
i fi. Then w ∈ gjH for some j since

⋃
k gkH = G. Moreover, the support of w

is in B, the restriction of w and f on Bj are the same and we have w ∈ gjH. This is a
contradiction, and proves the claim.

Now we use a commutator trick. Apply the same argument as above using Bj in place
of B. We find a smaller ball B′ ⊂ Bj such that every element f ∈ GB′ agrees with the
restriction to B′ of an element vf ∈ H, and vf is supported on Bj . Since Diffrc(B

′) is perfect
[1, 10, 11, 18], any element f ∈ Diffrc(B

′) may be written as a product of commutators

f =
∏k
i=1[ai, bi]. The commutator length k of course depends on f , but this is unimportant

to us. We have [ai, bi] = [vai , wbi ] since the supports of vai and wbi intersect only in B′,
and so f =

∏
[vai , wbi ] ∈ H. This ends the proof of the first step.

Step 2: transitivity. To prove transitivity, let B′ be the ball from step 1, and let x ∈ B′.
Suppose y ∈M is some point not in the orbit of x. Let ft be a flow such that ft(y) ∈ B′ for
all t ∈ (1, 2). Such a flow can be defined to have support on a neighborhood of a path from
x to y. Since B′ lies in the orbit of x under H, we have that ft /∈ H for t ∈ (1, 2). We know
that H ∩ {ft : t ∈ R} is a countable index subgroup of {ft : t ∈ R} ∼= R. Thus, it must
intersect every open interval of R, this gives the desired contradiction. As explained above,
Steps 1 and 2 together with fragmentation complete the proof of the Theorem 1.2. �

As an immediate consequence, we can conclude that any fixed point free action of such
a group on the line or circle is minimal.

Corollary 2.1. With the same restrictions on r as above, if Diffrc(M) acts on R or S1

without global fixed points, then there are no invariant open sets. In particular, every orbit
is dense.



4 LEI CHEN AND KATHRYN MANN

Proof. Suppose the action has an invariant open set. Then Diffrc(M) permutes the (count-
ably many) connected components of U . The stabilizer of an interval is a countable index
subgroup, so by Theorem 1.2, the permutation action is trivial. Thus each interval is fixed
and their endpoints are global fixed points. �

3. Proof of Theorem 1.1

For the proof of Theorem 1.1, we set the following notation. As in the previous section
we fix some r 6= dim(M) + 1 and when U ⊂M is an open set we denote by GU the identity
component of the subgroup of Diffrc(M) consisting of elements compactly supported on
U . We additionally use the notation GU ⊂ Diffrc(M) for the set of elements that pointwise
fix U . The open support of a homeomorphism g is the set Osupp(g) := M − Fix(g); as is
standard, the support of g is defined to be the closure of Osupp(g).

Proof. We will assume the action on N has no global fixed points, since if the action does
have fixed points, then N − Fix(ρ) is a union of open intervals, each with a fixed-point free
action of Diffrc(M), so it suffices to understand such actions. In this case, we will show
that there is a single homeomorphism φ : M → N such that the action on N is induced by
conjugation by φ.

Lemma 3.1. For any action, if U ∩ V = ∅, then Osupp(ρ(GU )) ∩ Osupp(ρ(GV )) = ∅.

Proof. Since GU and GV commute, ρ(GV ) preserves Osupp(ρ(GU )), permuting its con-
nected components. By Theorem 1.2, this action is trivial. Let I be a connected component
of Osupp(ρ(GU )). Suppose ρ(GV ) acts nontrivially on I. Since GV is simple group, its
action on I is faithful. Since GV is not abelian, Hölder’s theorem implies that some
nontrivial ρ(g) ∈ ρ(GV ) acts with a fixed point. But then ρ(GU ) permutes the connected
components of I −Osupp(ρ(g)), and this permutation action is trivial. Thus, ρ(GU ) has a
fixed point in I, contradicting that I ⊂ Osupp(ρ(GU )). �

We observe the following consequence of the fragmentation property:

Observation 3.2. If Ū ∩ V̄ = ∅ then GU and GV generate Diffrc(M) because GU ⊃ GM−Ū
and GV ⊃ GM−V̄ , and M − V̄ and M − Ū cover M . Consequently, our assumption that

there are no global fixed points for the action implies that Fix(ρ(GU )) ∩ Fix(ρ(GV )) = ∅.

Our next goal is to define a map from M to N . For each x ∈ M pick a neigh-
borhood basis Un(x) of x so

⋂
n Un(x) = {x}. Let Sx =

⋂
n Osupp(ρ(GUn(x))) and let

Tx =
⋂
n Fix(ρ(GUn(x))). Note that the sets Sx and Tx are independent of the choice of

neighborhood basis.

Lemma 3.3. If x 6= y, then Sx ∩ Sy = ∅ and Tx ∩ Ty = ∅. Also, Sx and Tx have empty
interior.

Proof. The first assertion follows immediately from Lemma 3.1 and the second because
Tx ∩ Ty would be globally fixed by ρ by our observation above. Furthermore, if g(x) = y,
then ρ(g)(Un(x)) is a neighborhood basis of y, so we have

ρ(g)Sx =
⋂
n

ρ(g) Osupp(ρ(GUn(x))) =
⋂
n

Osupp(ρ(gGUn(x)g
−1)) =

⋂
n

Osupp(ρ(Gg(Un(x)))) = Sy.
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Similarly we have Ty = ρ(g)Tx. Thus, if some Sx has nonempty interior, disjointness of Sx
and Sy would give an uncountable family of disjoint open sets in N , a contradiction. The
same applies to the sets Tx. �

We next prove these sets, though defined differently, are in fact the same.

Lemma 3.4. For all x, we have Sx = Tx

Proof. Fix x and let Un = Un(x) be a neighborhood basis of x with the property that
Un ⊃ Un+1 for all n. Thus, by Lemma 3.1, ρ(GUn+1) and ρ(GM−Un

) have disjoint open

supports. Since GM−Un
⊃ ρ(GUn) we conclude

Osupp(ρ(GUn+1)) = N − Fix(ρ(GUn+1)) ⊂ Fix(ρ(GM−Un
)) ⊂ Fix(ρ(GUn))

Also, since Un and M − Un− 1 have disjoint closures, Observation 3.2 implies that
Fix(ρ(GUn)) ∩ Fix(ρ(GM−Un−1)) = ∅, so

Fix(ρ(GUn)) ⊂ Osupp(ρ(GM−Un−1)) ⊂ Osupp(ρ(GUn−2))

Combining the two equations above and taking a limit as n→∞ shows that Sx ⊂ Tx ⊂ Sx,
as desired.

Thus Sx ⊂ Tx. For the reverse inclusion, suppose z ∈ Tx− Sx. Then z /∈ Osupp(ρ(GUn))
for some n; i.e., z ∈ Fix(ρ(GUn)). Also z ∈ Fix(ρ(GUn+1)) by the definition of Tx. But GUn

and GUn+1 together generate Diffrc(M) (this again is the fragmentation property), so this
implies that z is a global fixed point. �

Lemma 3.5. Sx is nonempty.

Proof. If N = S1, this follows immediately since Sx = Tx is the intersection of nested,
nonempty closed sets. If N = R, the same is true provided that Fix(ρ(GUn(x))), (or
equivalently Osupp(ρ(GUn(x))), does not leave every compact set as n → ∞. Note that
this holds for some x if and only if it holds for all x because ρ(g)Sx = Sy when g(x) = y.

Suppose for contradiction that, for each x ∈M ,as n→∞ we have that Osupp(ρ(GUn(x))
does leave every compact set. Fixing some compact K ⊂ R, this means that for each
x ∈ M there is a neighborhood U(x) of x such that Osupp(ρ(GU(x))) ∩ K = ∅. Let O
denote the open cover formed by such sets U(x). By fragmentation, Diffrc(M) is generated
by the subgroups G(U(x)). Thus, Osupp(ρ(Diffrc(M)) ∩K = ∅ contradicting the fact that
ρ has no global fixed points.

�

Construction of φ. To finish the proof, we wish to show that Sx is a singleton, and the
assignment φ : x 7→ Sx is a homeomorphism conjugating ρ with the standard action of
Diffrc(M) on M . We will actually show first that x 7→ Sx is a local homeomorphism, use
this to conclude that Sx is discrete, and proceed from there.

Step 1: definition of φ locally Let I = (a, b) be a connected component of N − Sx,
chosen so that a 6= −∞ if N = R. If N = S1 and Sx is a singleton, it is possible that
both “endpoints” of this interval agree. For simplicity, we treat the case where a 6= b, the
case a = b on the circle can be handled with exactly the same strategy, and in fact the
argument simplifies quite a bit since Sx is already a singleton.

Fix a neighborhood basis Un ⊃ Un+1 ⊃ ... of x. For n ∈ N, denote by On the connected
component of Osupp(ρ(GUn)) that contains a. Since ∩kOk ⊂ Sx and contains a, and since
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(a, b) ⊂ N − Sx, we can conclude that for all k sufficiently large a is the rightmost point of
Sx ∩Ok.

Fix such a k. We will show that, for y ∈ Uk, the set Sy ∩Ok also has a rightmost point.
This allows us to define a map from Uk to Ok, sending y to this rightmost point, which
we will then show is the desired local homeomorphism. First, to see that Sy ∩Ok has a
rightmost point, take some g ∈ GUk

with g(x) = y. Thus ρ(g)(Sx) = Sy. Since ρ(g) fixes
endpoints of Ok by definition, we know that ρ(g)(a) ∈ Sy and is the rightmost point of
Sy ∩Ok. This proves our claim.

Define φ : Uk → Ok by setting φ(y) to be the rightmost point of Sy ∩Ok. An equivalent
definition of φ is that φ(y) := ρ(g)(a), where g is any diffeomorphism in GUk

such that
g(x) = y. Our argument above shows this is independent of choice of g. Furthermore, if
we repeat the definition using Uk+1 instead of Uk, the map we will obtain is simply the
restriction of φ to Uk+1.

Step 2: local continuity of φ on Uk

We first show that φ is continuous at x. Suppose xn → x is a convergent sequence.
Passing to a subsequence and reindexing if needed, we may assume that xn ∈ Un and that
our index set starts at k. Then we may take g ∈ GUn so that g(x) = xn, so φ(xn) = ρ(g)(a).
Since the sequence of connected components of Osupp(ρ(GUn)) containing x converges to
x, we get that φ(xn)→ a.

To show that φ is continuous on Uk, let x′ ∈ Uk, and take a sequence x′n → x′ in
Uk. There exists g ∈ GUk

such that g(x) = x′ and g−1(x′n) is a sequence converging
to x. It follows from continuity at x that φ(g−1(x′n)) converges to φ(x). By definition,
ρ(g)φ(g−1(x′n)) = φ(x′n), so we conclude that φ(x′n) converges to φ(x′).

Note also that φ is injective by Lemma 3.3. Thus, by invariance of domain, we conclude
that M is one-dimensional so equal to R or S1, and φ gives a homeomorphism from Uk
onto an open interval A containing a in N . In particular, this shows that a is an isolated
point of Sx.

Step 3: extension of φ globally
The last step is to show that φ extends to a globally defined homeomorphism M → N ;

to do this we actually work with the inverse of φ. First, note that the orbit of A under
ρ(G) is an open, ρ(G)-invariant set, so by Corollary 2.1, ρ(G)(A) = N .

This topological transitivity implies that, for all x, every point of Sx is an isolated point,
i.e. Sx is discrete. Extend φ−1 to a map ψ defined on N by setting ψ(Sx) = x. The work
in step 2 and the fact that ρ(g)(Sx) = Sg(x) implies that ψ is a local homeomorphism,
hence a covering map, and is equivariant with respect to the actions of Diffrc(M) by its
standard action on M and by ρ on N . If M = R, we immediately conclude that N = R,
and ψ conjugates ρ to the standard action of Diffrc(R).

If M = S1, we can also conclude that N = S1 because Diffrc(S
1) contains torsion, so

cannot faithfully act on R. Thus, ψ : Sx 7→ x is a finite cover, and ρ is a lift of the
standard action of Diffrc(S

1) on S1. Identifying the rotation subgroup SO(2) with S1, and
considering ρ(SO(2)) which is a continuous lift, covering space theory tells us the degree of
the cover must be 1. Alternatively, one can derive a contradiction by looking at the action
of finite order elements: an order two rotation lifted to a degree d cover will have order 2d.

�
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