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Abstract

The study of Julia sets gives a new and natural way to look at fractals.
When mathematicians investigated the special class of Misiurewicz’s ratio-
nal maps, they found out that there is a Julia set which is homeomorphic
to a well known fractal, the Sierpinksi gasket. Here we apply the methods
of defining an Laplacian developed by Bob Strichartz et al. to give rise to
another construction on SG with an inherited dynamical behavior.
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1 Julia sets of rational maps

Complex dynamics is not restricted to polynomial maps. One can also investi-
gate the dynamics of rational functions R(z) = P (z)

Q(z) where P and Q are complex
valued polynomials. One might react critical to the case when z is a root of Q,
since R is mapped to ∞, but for the iteration of functions, ∞ is not a special
point. Hence, one deals with maps R : P1 7→ P

1, where P
1 := C ∪ {∞} is the

Riemann sphere. Indeed P
1 can be identified as the usual 2-sphere which also

provides a metric.
Now one wants to define a Julia set for the rational map. The definition for

polynomials by bounded orbits does not work here anymore. Instead, one de-
fines Julia sets by normal families. The definition and further mentioned prop-
erties are from [Bla84], who gives a rigorous introduction into the dynamics of
rational maps.

Definition 1. 1 Let U be an open subset of P1 and F = {fi |i ∈ I} a family of mero-
morphic functions on P

1 defined on U (I is any index set). The family F is a normal
family if every sequence fn contains a subsequence fnj which converges uniformly
on compact subsets of U .

Definition 2. The Fatou set F of a rational map R : P1 7→ P
1 is the set of points

that have a neighborhood on which the sequence of iterates Rn forms a normal fam-
ily. The Julia set J is the set of points that have no such neighbourhood.

The definition might look a bit awkward, but it coincides with the defini-
tion for polynomials and similar properties of Julia sets still hold: The Julia set
is compact and completely invariant, meaning that

R(J) = J = R−1(J). (1)

The formal definition of a Julia set is not intrinsically useful to decide,
whether a point belongs to the Julia set or not. For periodic points this can
be decided rather easily, and together with the invariance property one can
conclude for more points to be in the Julia set.

Definition 3 ([Bla84] p.93). The periodic orbitO+(z0) of a periodic point consists
of all points Rk(z0) for 1 ≤ k < n and Rn(z0) = z0. Let µ = (Rn)′(z0). A periodic orbit
is:

• attracting if 0 < |µ| < 1

• superattracting if µ = 0

• repelling if |µ| > 1

1[Bla84] p.89
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• indifferent if |µ| = 1

Proposition 1. If O+(zo) is a (super)attracting periodic orbit, then it is contained
in F . If it is a repelling orbit, then it is contained in J .

One should note that µ is a constant for the orbit independent of the choice
of z0, this can be seen by repeatedly applying the chain rule:

(Rn)′(z0) = R′(R(z0)) ·R′(R2(z0)) · · ·R′(Rn(z0)) (2)

A class of rational maps we will focus on are so called Misiurewicz rational
maps. They are defined by the special properties of its critical values, i.e. all
points z ∈ C satisfying R′(z) = 0, which always play an essential role to under-
stand the dynamics. Denote the set of critical values by CV (R). And call Ω(R)
the ω-limit set of CV (R), that means z ∈Ω(R) iff there exists a c ∈ CV (R) and
an unbounded sequence nk of positive integers such that z = limk→∞R

nk (c).
Finally, let ω(R) :=Ω(R)∩J .

Definition 4 ([DU91] p.200). A rational map R is Misiurewicz or subexpanding
if R|ω(R) is expanding:

∃s ≥ 1∃µ′ > 1∀z ∈ω(R) : |(Rs)′(z)| ≥ µ′

.

2 Dynamics on SG

In [DRS06] one investigates rational maps of the form zn + λ
zm with gasket like

Julia sets. A generalized Sierpinksi gasket is described as having aN -fold sym-
metry and from the second stage and onward of the construction, m corners of
a removed region lie in the boundary of one of the removed regions in the pre-
vious stage, with 1 ≤m < N . It is proven that the structure of a generalized SG
for those described maps occurs, when they are so called MS-maps:

Definition 5 ([DRS06] Def. 2.2). A map is called Misiurewicz-Sierpinski map or
just MS-map if

• each critical point lies in the boundary of the immediate basin of infinity

• each of the critical points is preperiodic

One should note that a MS-map is always Misiurewicz:

Proposition 2. If all critical points of a rational map R are preperiodic (without
indifferent periodic points), then it is Misiurewicz.

Proof. Let c1, ..., cn be the critical points of R, who reach a cycle of periods
p1, ..pn and elements of the orbits z1, .., zn, respectively. The union of the orbits
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will be the ω-limit set. All points contained in ω(R) will satisfy |(Rpi )′(zi)| > 1.
Let s =

∏n
i=1 ci . Similar to (2) one has:

(Rs)′(zi) =
(
R′(R(zi)) ·R′(R2(zi)) · · ·R′(Rn(zi))

)s/pi
All of these derivatives will have absolute value greater than one, take µ′ to be
the minimum of them.

Now to describe the symbolic dynamics, let βλ be the boundary of the basin
of infinity and τλ the boundary of the neighbourhood of 0 that is mapped to the
basin of infinity, also called trap door. The critical points are now exactly the
intersection points of βλ and τλ. Moreover, define τkλ = R−k(τλ) which consists
of several connected components and are the removed regions from the second
step and onward of the construction of the Julia set. The Julia set is now the
closure of βλ ∪

⋃
k≥0 τ

k
λ.

From now on we will focus on the case R(z) = z2 + λ
z with λ = −16

27 where
the resulting Julia set is homeomorphic to the standard Sierpinski Gasket. The
map has three critical points c0 = −2/3, c1 = 1/3 + 0.577i and c1̄ = 1/3− 0.577i.
The point z0 = R(c0) = 4/3 is a fixed point with R′(z0) = 3, hence it lies on
the Julia set. Moreover, z1 = R(c1) and z1̄ = R(c1̄) form a 2-periodic cycle and
(R2)′(z1) = (R2)′(z1̄) = (R2)′(z0) = 9. Hence, by Proposition 2 the map is Misi-
urewicz. The outer triangle of SG with vertices z0, z1, z1̄ corresponds to βλ and
the first removed triangle in the center of SG has vertices c0, c1, c1̄. At the next
step τ1

λ consists of the three smaller triangles removed in the second step of
the construction of SG. And exactly m = 1 corners of these removed regions lie
in the boundary of the removed region in the previous stage.

This gives rise to a completely new construction method of SG with a dy-
namical background. One takes the same graph approximation defined by
V0 = {z0, z1, z1̄} and Vm+1 = R−1Vm, but with a completely different mapping.
The mapping for V2 as an example is shown in Figure 2.

3 Standard Energy

As developed in [Str06] since one has now a graph approximation one wants
to construct a Laplacian on it, the first step is to define a graph energy:

Em(u,v) =
∑
x∼my

cm(x,y)(u(x)−u(y))(v(x)− v(y)) x,y ∈ Vm

In order to respect the dynamics, we want to choose suitable conductances
cm(x,y) such that the Energy is invariant:

Em(u ◦R,v ◦R) = c ·Em−1(u,v) (3)
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Figure 2: Dynamics for V2

with some constant c independent of u,v or m. For m = 1 one has for u = v 2:

E0(u) = c(z0, z1)(u(z0)−u(z1))2 + c(z1, z1̄)(u(z1)−u(z1̄))2 + c(z1̄, z0)(u(z1̄)−u(z0))2

and

E1(u ◦ P ) = (c(z1, c1) + c(c1, c1̄) + c(c1̄, z1̄))(u(z1)−u(z1̄))2

+ (c(c1, z0) + c(c0, z1̄) + c(c0, c1))(u(z0)−u(z1))2

+ (c(z0, c1̄) + c(c0, z1) + c(c0, c1̄))(u(z1̄)−u(z0))2.

(4)

There are multiple solutions for the conductances such that the invariance
property is fulfilled, the easiest solution would be to set all conductances to
1. For higher levels, this will still satisfy (3) since the degree of the map is 3,
thus each point has 3 preimages and always three of the 3m+1 edges in Vm are
identified. Hence, one obtains the identity:

Em(u ◦Rk ,v ◦Rk) = 3kEm−k(u,v) (5)

The graph energy is not different from the standard energy for SG. So the en-
ergy renormalization is the same:

εm =
(3

5

)−m
Em(u) (6)

Combining this equation with (5) and passing m to infinity one obtains an
invariant energy:

ε(u ◦Rk ,v ◦Rk) = 5kε(u,v) (7)
2the invariance property still holds for the bilinear form by the polarization identity, see [Str06]

Eq. (1.3.3)

5



4 Measure and Laplacian

The next step is to define a suitable measure on SG.Again to respect the dy-
namics the measure should be invariant:

µ(A) = µ(R−1A)

for every Borel set A and therefore∫
A
f ◦Rdµ =

∫
A
f dµ (8)

.
A theorem by Denker and Urbański states that there is not much choice:

Theorem 1 ([DU91]Theorem 4.6). For a Misiurewicz rational map R there exists
a unique, ergodic, R-invariant probability measure µ.

The following Lemmata show now that the standard measure on SG is the
only suitable measure.

Lemma 1. The standard measure µ is R-invariant.

Proof. Every Borel set A can be approximated arbitrarily well by a finite union
of cells in SG, say A ≈

⋃
Fi where the Fi are level m cells. By the continuity

of R it suffices to show the invariance property for this set. The preimage of
every m-cell consists of three m+ 1 cells. Since a m+ 1 cell has one third of the
measure of the next higher level cell, one may conclude

µ(
⋃

Fi) = µ(
⋃

R−1Fi)

Lemma 2. The standard measure µ is ergodic.

Proof. Two measures are said to be equivalent if they share the same sets of
measure zero. The invariant measure µi from [DU91] Thm. 4.6 is equivalent
to the h-conformal measure µν which is said to be equivalent to the Hausdorff
measure 3. Finally, the Hausdorff measure on SG is equivalent to the standard
measure µs 4. Recall that ergodicity means that all sets satisfying A = R−1A
have full measure or are zero sets. Now µi is defined to be ergodic and equiv-
alent to µs. Hence, for every invariant set A if µi(A) = 0 then µs(A) = 0 and if
µi(A) = 1 then µi(Ac) = µs(Ac) = 0 and hence µs(A) = 1.

Thus one obtains the standard Laplacian, defined by the weak formulation:

−ε(u,v) =
∫

(∆µu)v dµ ∀v ∈ domε. (9)

3[DU91] p.195
4[Str06] p.6
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Combining (3), (8) and (9) one obtains:

∆µ(u ◦Rk) = 5k∆µ(u). (10)

It immediately follows a property about the eigenfunctions of the operator:

Theorem 2. If u is an eigenfunction of ∆µ with eigenvalue λ, then u ◦Rn is also an
eigenfunction of ∆µ with eigenvalue 5kλ. In particular, 5Σµ ⊂ Σ, where Σµ is the
spectrum of ∆µ.

5 Iterated Function System

It can be observed that the map R has a linear behaviour in the region formed
by the triangle c1, z0, c1̄, that we will name F0K . Treating with the linear maps
on SG F0,F1,F2 as discussed in [Str06], for points z ∈ F0K one has in a combi-
natoric sense

R(z) = F−1
0 (z) (11)

One should mention that the Julia set in figure 1 is not exactly formed by tri-
angles, because some edges are concave and one does not have a contraction by
the factor 1

2 everywhere as in SG. But for the combinatoric purposes of defining
graph energies, this does not matter.

Moreover, all maps of the form z2 + λ
z have the symmetry properties:

R(ωz) = ω2R(z) (12)

R(ω2z) = ωR(z) (13)

where ω is the rotation of a third circle, ω = e
2
3πi . Note that one can express

the maps F1 and F2 in terms of F0 and rotations:

F−1
1 =ω ◦F−1

0 ◦ω
2 (14)

F−1
2 =ω2 ◦F−1

0 ◦ω (15)

Iff z ∈ F0K then z̃ :=ωz lies in F1K . Now (12) becomes

R(z̃) = ω2R(ω2z̃)

Since ω2z̃ = z ∈ F0K , one may apply (11) to get:

R(z̃) = ω2 ◦F−1
0 ◦ω

2(z̃)

And (14) yields:
R(z̃) = ω ◦F−1

1 (z̃) (16)

Similar, for ˜̃z :=ω2z ∈ F2K equation (13) becomes:

R(˜̃z) = ωF−1
0 (ω˜̃z) = ω2 ◦ω2 ◦F−1

0 ◦ω(˜̃z)
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And (15) yields:
R(˜̃z) = ω2 ◦F−1

2 (˜̃z) (17)

And for the preimage R−1 equations (11), (16), (17) become:

R−1|F0K = F0 (18)

R−1|F1K = F1 ◦ω2 (19)

R−1|F2K = F2 ◦ω (20)

Hence, one obtains the iterated function system (IFS):

K = R−1(K) =
2⋃
i=0

F̃iK (21)

where F̃0 = F0, F̃1 = F1 ◦ω2 and F̃2 = F2 ◦ω.
Furthermore, one can replace K by the graph approximation Vm+1 in the

inverse formulas (18)− (20):

Vm+1 = R−1(Vm) =
2⋃
i=0

F̃iVm (22)

6 Self-Similar Energy Forms

We seek a regular Dirichlet form ε that satisfies the self similar identity:

ε(u) =
∑
i

r−1
i ε(u ◦ F̃i) (23)

for a set of weights {ri} satisfying 0 < ri < 1. Equivalently, one seeks a solution
to the renormalization problem. Given initial positive conductances on v0 one
defines the energy on V1 by

ε1(u) =
∑
x∼1y

c1(x,y)(u(x)−u(y))2 (24)

for
c1(F̃ix, F̃iy) = r−1

i c(x,y) ifx,y ∈ V0.

Note that this implies the energy invariance (3) for c = r−1
0 + r−1

1 + r−1
2 . One says

that ε0 solves the renormalization problem with given weights if

ε1(ũ) = λε0(u) (25)

for the harmonic extension ũ on V1. After finding out the constant λ, one
renormalizes the weights by setting r̃i = λ−1ri . Then the graph energy can be
defined in a similar sense for higher levels which converge to an energy on
K = SG. This problem has been studied for the standard IFS and for SG with
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Figure 3: Network transformation on V0

twists [CS07]. Here we will investigate if one can find an equally simple answer
for our case involving rotations. In order to determine the existence of λ in
(25) one uses the electric network interpretation and ∆ − Y transformations
5. Let c0, c1, c2 be the initial conductances on V0. Denote wi = c−1

i the initial
resistances on V0. Since the weights are renormalized afterwards anyway, one
may set r0 = 1.

In Figure 3 the ∆ − Y transformation is shown for V0. Without loss of
generality, one may set w1w2

D = 1 and denote s1 = w0w2
D and s2 = w0w1

D where
D = w0 +w1 +w2.

5[Str06] pp. 23-27
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Figure 4: Resistances on V1

Figure 5: First step of network transformation
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Figure 6: Second step of network transformation

Figure 7: Final step of network transformation

Corresponding to (24), the resistances on V1 are shown in Figure 4. Now
one applies ∆− Y transformations to each of the three triangles and expresses
the result in terms of s1 and s2, see Figure 5. After summing up adjacent resis-
tances one obtains Figure 6. A last transformation and summing up the resis-
tances at the outer edges finally yields to Figure 7. For simplicity, abbreviate
Σ = r1 + r2 + s1 + s2 + s1r1 + s2r2. The resulting network should be now a multi-
ple of the Y -network in Figure 3 in accordance to (25). Hence, one obtains the
system of equations:
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Σ+ s1s2(1 + r1)(1 + r2) = λΣ (26)

Σs2r1 + s1(1 + r1)(r1 + r2) = λs1Σ (27)

Σs1r2 + s2(1 + r2)(r1 + r2) = λs2Σ (28)

One can use (26) to determine λ. Since the weights and conductances are pos-
itive, λ > 1 and so r̃0 = λ−1 < 1. The remaining equations are just:

Σs2r1 + s1(1 + r1)(r1 + r2) = Σs1 + (1 + r1)(1 + r2)s21s2 (29)

Σs1r2 + s2(1 + r2)(r1 + r2) = Σs2 + (1 + r1)(1 + r2)s1s
2
2 (30)

The essential observation is that (29) is linear in r2 and (30) is linear in
r1.This is not a trivial fact and only occurs on lucky cases of an IFS like SG
with twists. This shows once more, that complex dynamics are the right way
to look at it.
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