Note: similar problems (and solutions) can be found on the sample midterms that were handed out today.

1. (Section 7.5) Evaluate

$$
\int \frac{d x}{e^{2 x}+5 e^{x}+4}
$$

2. (Section 7.7)
(a) Apply Simpson's rule to approximate $\int_{0}^{3} \sec \left(x^{2}\right) d x$ using $n=4$. Write your answer as a sum of secant functions.
(b) As $n \rightarrow \infty$, how quickly does the error in Simpson's Rule go to 0 , in terms of a power of n ? (no need to give the other coefficients)
3. (Section 7.8) Which of the following is true for

$$
\int_{2}^{\infty} \frac{e^{-x^{3}}}{x} d x ?
$$

(a) The limit exists and is finite.
(b) The limit exists and is ∞.
(c) The limit exists and is $-\infty$.
(d) The limit does not exist.

Explain you answer carefully, stating all results that you are using.

