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Abstract. When considered as an algebraic space, the set of arithmetic func-

tions equipped with the operations of pointwise addition and Dirichlet convo-
lution exhibits many nontrivial properties. In this paper, we delineate and

prove several of these properties, and consider ways to quantify the behavior

of certain functions.

Contents

1. Introduction

Consider a function % : N→ N given by the recursive definition

%(n) =


1, if n = 1;∑

d|n,d<n

%(d), if n > 1.

This function, defined on the natural numbers, is an example of an arithmetic
function. It exhibits erratic behavior in many ways: for example, for values of n
with few prime factors it remains small, but it quickly grows arbitrarily large if n
has many prime factors. However, using the techniques of analytic number the-
ory, the behavior of this and related functions can be quantitatively studied. In
this paper, we examine the properties of various important arithmetic functions
and consider the space of such functions, equipped with the operations of addi-
tion, multiplication, and Dirichlet convolution. We also deduce several facts about
the existence and properties of roots of polynomials with arithmetic functions as
coefficients.

2. The Space of Arithmetic Functions

In this section we introduce the concept of an arithmetic function, and define a
space of arithmetic functions with several operations. We then isolate a few specific
functions which will be of use later.

Definition 2.1. An arithmetic function is a complex-valued function which is
defined on the natural numbers, i.e., a function of the form f : N→ C.

These functions are also known as number-theoretic functions, which is indicative
of their interpretation as encodings of specific properties of the natural numbers.

1
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Definition 2.2. In this paper, we denote the set of arithmetic functions as A.
We also equip A with the operation + : A × A → A given by, for f, g ∈ A,
(f + g)(n) = f(n) + g(n) for all n ∈ N.

Throughout this paper, we will denote arbitrary arithmetic functions by f, g, h,
as well as Ak for k ∈ N. Later, we will define polynomial functions from A to
itself, which will commonly be denoted F,G,H. We also define one other binary
operation on A, which is important enough to merit its own definition.

Definition 2.3. Let f, g ∈ A. The Dirichlet convolution (or simply convolution)
of f, g, denoted f ∗ g, is the function given by, for each n ∈ N,

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
,

or, equivalently,

(f ∗ g)(n) =
∑
ab=n

f(a)g(b).

These two definitions are equivalent via the substitution a = d, b = n
a = n

d .

The following elements of A are important in the study of arithmetic functions:

Definition 2.4.

(i) The identity function ε ∈ A is given by, for each n ∈ N,

ε(n) =

{
1, if n = 1,

0, otherwise.

(ii) The constant functions 0,1 ∈ A are given by 1(n) = 1 and 0(n) = 0 for each
n ∈ N.

(iii) The divisor function σi ∈ A, defined for each i ∈ C, is given by

σi(n) =
∑
d|n

di.

for each n ∈ N. In this paper we denote σ0 by τ and σ1 by σ.

Note that, while convolution will play a role similar to multiplication in this
paper, the function 1 is not the identity with respect to convolution.

3. A is an Integral Domain

First, we develop arithmetic on A and prove several statements regarding its
algebraic structure.

Lemma 3.1. The operation ∗ is commutative, associative, and distributive over
addition.

Proof. First, we show that convolution is commutative. To observe this, we use the
second definition from Definition 2.3:

(f ∗ g)(n) =
∑
ab=n

f(a)g(b) =
∑
ab=n

g(a)f(b) = (g ∗ f)(n).

To show that convolution is associative, we again use the second definition:
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(f ∗ (g ∗ h))(n) =
∑
ab=n

f(a) · (g ∗ h)(b)

=
∑
ab=n

(
f(a)

∑
cd=b

g(c)h(d)

)
=
∑

acd=n

f(a)g(c)h(d)

=
∑
ed=n

∑
ac=e

f(a)g(c)h(d)

= ((f ∗ g) ∗ h)(n).

Lastly, we show that convolution distributes over addition:

(f ∗ (g + h))(n) =
∑
ab=n

f(a) · (g + h)(b)

=
∑
ab=n

f(a)g(b) + f(a)h(b)

=
∑
ab=n

f(a)g(b) +
∑
ab=n

f(a)h(b)

= (f ∗ g)(n) + (f ∗ h)(n).

�

We next prove an important result about the role of ε with respect to Dirichlet
convolution:

Lemma 3.2. The function ε ∈ A is the identity element with respect to Dirichlet
convolution, i.e., ε ∗ f = f ∗ ε = f for all f ∈ A.

Proof. Fix some f ∈ A, and observe that, for all n ∈ N,

(f ∗ ε)(n) =
∑
d|n

f(d) · ε
(n
d

)
= f(n)ε(1) +

∑
d|n,d<n

f(d) · ε
(n
d

)
= f(n),

since ε
(
n
d

)
= 0 when d < n. That ε ∗ f = f ∗ ε = f follows from ??. �

We can now make the following important statement about A:

Theorem 3.3. The set A, along with the operations + and ∗, forms a commutative
ring.

Proof. Pointwise addition is trivially commutative and associative, and has the
identity element 0 ∈ A, where 0(n) = 0 for all n ∈ N. Furthermore, for any f ∈ A
we define −f as the function such that (−f)(n) = −(f(n)) for each n ∈ N; this
represents the additive inverse of the element f. From ?? and ??, we have that
convolution is commutative, associative, and has an identity element ε ∈ A. Lastly,
from ??, we have that convolution distributes over addition. �
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There, is, however, additional algebraic structure on A with respect to convolu-
tion as demonstrated by the following lemma:

Lemma 3.4. Suppose f ∈ A.Then there exists f−1 ∈ A such that f ∗ f−1 = ε if
and only if f(1) 6= 0.

Proof. To show the forward direction, let f ∈ A and suppose that there exists
f−1 ∈ A such that f ∗f−1 = ε. Observe that f(1)f−1(1) = (f ∗f−1)(1) = ε(1) = 1,
so f−1(1) = 1

f(1) . Hence f(1) 6= 0.

To show the backward direction, fix f ∈ A such that f(1) 6= 0. We will show that
g(n) can be uniquely defined such that (f ∗ g)(n) = ε(n), proceeding by induction
on n :

Base Case. Let n = 1 and g(1) = 1
f(1) . Since f(1) 6= 0, we have g(1) is well-

defined, and this definition satisfies

(f ∗ g)(1) = f(1)g(1) = 1 = ε(1).

Furthermore, any value of g(1) which satisfies the above must equal 1
f(1) , so this

g(1) is defined uniquely.
Inductive Step. Fix n ∈ N and suppose that for each k < n we have that g(k) is

well-defined and unique. We now define g(n) as follows:

g(n) = − 1

f(1)

∑
d|n,d>1

f(d)g
(n
d

)
.

Observe that g(n) is well-defined for each n ∈ N, since f(1) 6= 0 and n
d ∈ N, nd < n,

so g
(
n
d

)
is uniquely defined by the inductive hypothesis for each d | n, d > 1. Now,

we show f ∗ g = ε. We have two cases: n = 1 and n > 1. If n = 1, then as before
(f ∗ g)(n) = f(1)g(1) = ε(n). If n > 1, then

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
= f(1)g(n) +

∑
d|n,d>1

f(d)g
(n
d

)
= f(1)g(n)− f(1)g(n)

= 0

= ε(n).

Thus g is the unique arithmetic function such that f ∗ g = ε, so for each f ∈ A
where f(1) 6= 0, we can let f−1 = g so that f ∗ f−1 = ε. Again, that f−1 ∗ f = ε
follows from the commutativity of Dirichlet convolution. �

Motivated by ??, we make the following definition:

Definition 3.5. A function f ∈ A is called invertible if f(1) 6= 0.

Using this property we can deduce additional algebraic structure on A :

Theorem 3.6. The set A has no zero divisors, i.e., if f, g ∈ A and f ∗ g = 0, then
at least one of f = 0, g = 0 holds.

Proof. We prove the contrapositive, that is, if f, g 6= 0 then f ∗ g 6= 0. Suppose
f, g 6= 0; we have that the setsM = {n ∈ N | f(n) 6= 0} andN = {n ∈ N | g(n) 6= 0}
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are nonempty. Let m,n be the least elements of M,N respectively, and consider
the evaluation of f ∗ g at mn :

(f ∗ g)(mn) =
∑

ab=mn

f(a)g(b).

Now, each term on the right is of the form f(a)g(b) where ab = mn. For each of
these terms, we have either a = m and b = n, in which case f(a)g(b) = f(m)g(n) 6=
0, or one of a < m, b < n, in which case f(a)g(b) = 0 since we assumed m,n were
the least elements of M,N. Thus there is exactly one nonzero term on the right side,
so the right side is nonzero; hence the left side must also be nonzero, so f ∗ g 6= 0.

�

The combination of ???? gives the following result:

Theorem 3.7. The set A, along with the operations of pointwise addition and
Dirichlet convolution, forms an integral domain.

Note that, since the condition that f(1) 6= 0 is weaker than the condition that
f 6= 0, ???? do not imply that A is a field. Indeed, the existence of elements in A
without inverses under convolution will have consequences when we consider roots
of polynomials in A.

4. Möbius Inversion and Related Results

In this section, we define an arithmetic function introduced by Möbius in 1832,
and prove several results regarding its relationship with other arithmetic functions.

Definition 4.1. The Möbius function µ ∈ A is given by, for each n ∈ N,

µ(n) =


−1 if n is a product of an odd number of distinct primes;

1 if n is a product of an even number of distinct primes;

0 otherwise.

Equivalently, if n is divisible by the square of a prime number, then µ(n) = 0;
otherwise, µ(n) = (−1)ω(n), where ω(n) denotes the number of prime factors of n.

To discuss the following results more concisely, we need the following lemma,
which solidifies the connection between divisor sums and convolution:

Lemma 4.2. For any f ∈ A, (f ∗ 1)(n) =
∑
d|n

f(d).

Proof. By definition, (f ∗ 1)(n) =
∑
d|n

f(d)1
(
n
d

)
. Since 1(n) = 1 for all n ∈ N, the

lemma follows. �

Some results which follow from ?? are:

(i) 1 ∗ 1 = τ (see Definition 2.4)
(ii) 1 ∗ 1 ∗ · · · ∗ 1︸ ︷︷ ︸

n times

= τn (see ??)

(iii) 1 ∗N = σ, where N(n) = n for all n ∈ N
Since µ is invertible, it is natural to ask what its inverse is under Dirichlet

convolution. The below theorem gives the surprising answer:

Theorem 4.3. µ ∗ 1 = ε.
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The following lemma will prove useful to prove ??:

Lemma 4.4. Let S be a finite nonempty set. Then the sets {S′ ⊂ S : |S′| is even}
and {S′ ⊂ S : |S′| odd} have the same cardinality.

Proof. We have two cases: |S| is odd and |S| is even. If |S| is odd, then we construct
a bijection as follows: Fix some subset of S′ ⊂ S. Trivially, |S′| + |S \ S′| = |S|,
and, since |S| is odd, this implies that |S′| and |S \ S′| have opposite parity. Thus
each subset of S corresponds to exactly one other subset of S such that every even-
sized subset corresponds to an odd-sized subset, and vice versa. Hence we have a
bijection between the set of even-sized subsets of S and odd-sized subsets of S.

If |S| is even, then we first fix some element p ∈ S. We construct a function f
from the power set of S to itself as follows: for any subset S′ of S, p ∈ f(S′) if and
only if p ∈ S′, and for each element k ∈ S \ {p}, we have k ∈ f(S′) if and only
if k 6∈ S′. Now, f is a bijection and has the property that if S′ has n elements,
then f(S′) has either (|S|+ 1)−n or (|S| − 1)−n elements, depending on whether
p ∈ S′. However, since |S| is even, both |S|+1 and |S|−1 are odd, so |S′|+|f(S′)| is
odd for each S′ ⊂ S. Similarly to the above, this implies that |S′| and |f(S′)| have
opposite parity; hence we again have a bijection between the even- and odd-sized
subsets of S. Thus the lemma is proved. �

Now, we move on to the proof of ??.

Proof of ??. If n = 1, then (µ ∗ 1)(n) = µ(1) = 1 = ε(n) as required, so suppose
n > 1. By ??, 1 ∗ µ =

∑
d|n

µ(d), so we need to show that the sum of µ(d) across

all of the divisors d of n is equal to ε(n). Since µ(n) = 0 unless n is squarefree,
we need only consider the sum across all squarefree divisors of n. Consider the set
Pn = {p1, p2, . . . , pm} of distinct prime factors of n; choosing a squarefree divisor
of n is equivalent to choosing some subset of Pn. Observe that, for any subset A of
Pn, the value of µ at the squarefree divisor which A represents is 1 if |A| is even
and −1 if |A| is odd. Since n > 1 we have Pn is nonempty, so by ?? Pn has an
equal number of even- and odd-sized subsets. Thus each positive 1 in the sum is
canceled by a -1 and the sum of µ across all subsets of Pn is zero. The theorem
follows. �

Since ?? states that the Möbius function is the inverse of the constant function 1

under Dirichlet convolution, it is often called Möbius inversion, although the name
is also given to the following corollary:

Corollary 4.5 (Möbius Inversion). Let f, g ∈ A such that for any n ∈ N we have

(4.6) f(n) =
∑
d|n

g(d).

Then

(4.7) g(n) =
∑
d|n

f(d)µ
(n
d

)
.

Proof. By ??, (4.6) is equivalent to f = g ∗ 1. Convolving on both sides by µ, we
obtain f ∗ µ = g ∗ 1 ∗ µ = g by ??. By definition this is equivalent to ??. �
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As an application of Dirichlet convolution and Möbius inversion, we return to
our function % from Section 1. We have, for all n,

%(n) = ε(n) +
∑

d|n,d<n

%(d).

So

2%(n) = ε(n) +
∑
d|n

%(d)

= ε(n) + (% ∗ 1)(n).

Thus we have

2% = ε+ % ∗ 1
⇒ (2%) ∗ µ = ε ∗ µ+ % ∗ 1 ∗ µ
⇒ 2(% ∗ µ) = µ+ %

⇒ −%(n) = µ(n) + (−2)%(n) +
∑

d|n,d>1

(−2)µ(d)%
(n
d

)
⇒ %(n) = µ(n) +

∑
d|n,d>1

(−2)µ(d)%
(n
d

)
.(4.8)

By evaluating ?? at n
d and substituting for %

(
n
d

)
, we obtain

%(n) = µ(n) +
∑

d1|n,d1>1

(−2)µ(d1)µ

(
n

d1

)

+
∑

d1|n,d1>1

∑
d2| n

d1
,d2>1

(−2)2µ(d1)µ(d2)%

(
n

d1d2

)
.

Repeating this process of substitution, we arrive at

%(n) = µ(n) +
∑

d1d2...dm=n
d1,d2,...,dm−1>1

(−2)m
∏
i≤m

µ(di) · µ
(

n

d1d2 . . . dm

)
,

which is a non-recursive definition for %. In general, for each k ∈ C we can define a
function %k ∈ A which satisfies the functional equation

k%k = (k − 1)ε+ %k ∗ 1,

where the factor (k−1) is included so %k(1) = 1 for all k ∈ C. By a similar argument
to the above, the solution to this functional equation is given by

%k(n) = µ(n) +
∑

d1d2...dm=n
d1,d2,...,dm−1>1

(
k

1− k

)m ∏
i≤m

µ(di) · µ
(

n

d1d2 . . . dm

)
,

a fact which has as a corollary %0 = µ. Thus Möbius inversion can be useful in
determining solutions to functional equations involving Dirichlet convolution.
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5. Polynomials in A

In this section, we develop the theory of polynomials in A, and deduce several
results about the existence and properties of their roots. We begin with several
definitions.

Definition 5.1. Let f ∈ A. We denote the repeated convolution f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
n times

by

f∗n, and set f∗0 = ε.

Definition 5.2.

(i) A polynomial in A is an expression of the form

n∑
i=0

Ai ∗X∗i = A0 +A1 ∗X +A2 ∗X∗2 + · · ·+An ∗X∗n,

where A0, A1, . . . , An ∈ A such that An 6= 0 and X is an indeterminate.
(ii) The natural number n is called the degree of the polynomial.

(iii) The elements A0, A1, . . . , An are called the coefficients or coefficient functions
of the polynomial, with An specifically called the leading coefficient.

(iv) If F is a polynomial in A and F(g) = 0 for some g ∈ A, we call g a root of F.

We denote the set of polynomials in A by A[X].

Since A is a ring, A[X] inherits the operations of addition, pointwise multiplica-
tion and Dirichlet convolution defined over A, so for any polynomials F,G ∈ A[X]
we let (F + G)(X) = F(X) + G(X) and (F ∗G)(X) = F(X) ∗G(X).

Theorem 5.3. Let A0, A1 ∈ A such that A1 is invertible. Then the polynomial
F(X) = A0 +A1 ∗X has a single unique root.

Proof. Since A1 is invertible, there exists a unique arithmetic function A−11 such
that A1 ∗ A−11 = ε. Let g = −A0 ∗ A−11 . Now F(g) = 0. Also, this root is unique
because any root g of F must satisfy −A0 ∗A−11 = g, and the inverse of A1 is unique
by ??. �

There is also an analog to the quadratic formula for polynomials in A with all
coefficients invertible. To prove this, we first need the following lemma:

Lemma 5.4. Let f ∈ A be invertible. Then there exist exactly two functions
g1, g2 ∈ A such that g1 ∗ g1 = g2 ∗ g2 = f.

Proof. For each natural number n, let L(n) denote the sum of the exponents in the
prime factorization of n. (For instance, since 288 = 25 ·32, we have L(288) = 5+2 =
7.) We will show that we can always uniquely define g1(n), g2(n) by induction on
L(n).

Base Case. Let L(n) = 0, so n = 1. If we define g1(1) as the principal square root
of f(1) and g2(1) as the negative square root of f(1), then we have that (g1∗g1)(1) =
f(1) = (g2 ∗ g2)(1). Moreover, any function h which satisfies (h ∗h)(1) = f(1) must
satisfy h(1)2 = f(1), so g1, g2 are both well-defined and the only functions which
satisfy the required property if L(n) = 0.

Inductive Step. Suppose that for some n ∈ N we have that if L(s) ≤ n then
g1(s), g2(s) are uniquely well-defined. Fix some m ∈ N such that L(m) = n+ 1 and
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let

g1(m) =
1

2g1(1)

f(m)−
∑
d|m

1<d<m

g1(d)g1

(m
d

) ,(5.5)

g2(m) =
1

2g2(1)

f(m)−
∑
d|m

1<d<m

g2(d)g2

(m
d

)(5.6)

We first show that the above definitions are well-defined. We have defined
g1(1), g2(1) to be the principal and negative square roots of f(1); since f(1) 6= 0
by hypothesis, we thus have that 2g1(1), 2g2(1) 6= 0. Next, observe that for all
d | m such that 1 < d < m we have L(d), L(m

d ) < L(m) = n + 1, so by our
inductive hypothesis the above expressions are well-defined. Furthermore, since a
rearrangement of the above yields

f(m) =
∑
d|m

gi(d)gi

(m
d

)
= (gi ∗ gi)(m),

for i = 1, 2, any function h ∈ A which satisfies h ∗ h = f must satisfy one of
(5.5),(5.6). Thus g1 and g2 are uniquely well-defined for any k ∈ N such that
d(k) = n+ 1. Hence the inductive proof is complete. �

As the above lemma shows, for an invertible function f ∈ A, the “principal
Dirichlet square root” (written g1 above) is well-defined; going forward we denote
this by f∗1/2. This square root has many of the same properties as the usual square
root; in particular, f∗1/2 ∗ g∗1/2 is a square root of f ∗ g for all invertible f, g ∈ A.

It is also important to note that, while ?? states that all invertible functions
have square roots under convolution, there exist non-invertible functions both with
and without square roots. As an example of a non-invertible function with a square
root, consider the class of functions δk given by, for each n, k ∈ N,

δk(n) =

{
1 if n = k,

0 otherwise.

Then the function δk2 , which is only invertible if k = 1, has δk as a square root under
convolution. As an example of a non-invertible function without a square root,
consider the function 1− ε, which evaluates to 0 if n = 1 and 1 otherwise. Suppose
for contradiction that this function has a square root s ∈ A. Since s(1)s(1) =
(s ∗ s)(1) = (1− ε)(1) = 0, we must have s(1) = 0. But this implies

1 = (1− ε)(2) = (s ∗ s)(2) = s(1)s(2) + s(2)s(1) = 0,

a contradiction. Hence s cannot exist.

Theorem 5.7 (Quadratic Formula). Let A,B,C ∈ A such that A and B∗2−4A∗C
are invertible. Then there exist exactly two roots f1, f2 ∈ A of the polynomial

(5.8) A ∗X∗2 +B ∗X + C,
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and these functions are given by

f1 = (−B + (B∗2 − 4A ∗ C)∗1/2) ∗ (2A)−1,

f2 = (−B − (B∗2 − 4A ∗ C)∗1/2) ∗ (2A)−1.

Proof. The majority of the proof is completely analogous to the usual derivation of
the quadratic formula, rearranging (5.8) to obtain

(5.9) (f −B ∗ (2A)−1)∗2 = (B∗2 − 4A ∗ C) ∗ (4A∗2)−1.

Since the right side is invertible, so is the left side, so by ?? we can take the Dirichlet
square root of both sides, and arrive at the formula specified by the theorem. �

We now turn to proving the general case, a partial analog of the Fundamental
Theorem of Algebra for A.

Definition 5.10. Let F ∈ A[X] be given by

F(X) =

n∑
i=0

Ai ∗X∗i = A0 +A1 ∗ x+ · · ·+An ∗X∗n.

The formal derivative of F is denoted F′ and given by

F′(X) =

n∑
i=1

iAi ∗X∗n−1 = A1 + 2A2 ∗X + · · ·+ nAn ∗X∗n−1.

Definition 5.11. Let F ∈ A[X]. The base polynomial of F, denoted PF, is the
polynomial over C whose coefficients are the coefficient functions of F evaluated at
1, i.e., if F(X) = A0 + A1 ∗X + · · · + An ∗X∗n, then PF(x) = A0(1) + A1(1)x +
· · ·+An(1)xn.

The formal derivative and base polynomial of a polynomial over A interact in
the following important way:

Lemma 5.12. Let F ∈ A[X]. Then PF′ = (PF)′, where the prime on the right-hand
side denotes the derivative in the usual sense.

Proof. Suppose F(X) = A0 + A1 ∗X + · · · + An ∗X∗n. The coefficients of F′ are
then A1, 2A2, 3A3, . . . , nAn, so we have

(5.13) PF′(x) = A1(1) + 2A2(1)x+ · · ·+ nAn(x)n−1.

Also, since PF(x) = A0(1) +A1(1)x+ · · ·+An(1)xn, taking the derivative as usual
yields

P ′F(x) = A1(1) + 2A2(1)x+ · · ·+ nAn(1)xn−1,

which is identical to ??. �

Given this fact, we make the following statement, the main theorem of this
section:

Theorem 5.14. Let F ∈ A[X] be a polynomial over A of degree at least 1 such
that PF has a root in C of multiplicity 1. Then F has a root g ∈ A.

Proof. The proof runs similarly to those of ????, in that we will show that for any
n ∈ N we can well-define g(n) such that F(g)(n) = 0, inducting on L(n).
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Base Case. Let L(n) = 0, so n = 1. By hypothesis PF has a simple root r ∈ C;
let g(1) = r. Now, we have

F(g)(1) = A0(1) +A1(1)g(1) + · · ·+An(1)g(1)n

= PF(g(1))

= 0.

Inductive Step. Suppose that for some n ∈ N we have that if L(s) ≤ n then g(s)
is well-defined. Fix some m ∈ N such that L(m) = n+ 1 and let

g(m) = − 1

F′(g)(1)

((
n∑

j=0

Aj(m)g(1)j

)
(5.15)

+

( ∑
d1d2...dn+1=m

d1,d2,...,dn+1 6=m

A0(d1)g(d2d3...dn+1)

τn(m/d1)

+
A1(d1)g(d2)g(d3...dn+1)

τn−1(m/(d1d2))

+ · · ·

+
A0(d1)g(d2)g(d3)...g(dn+1))

τ1(1)

))
,

where τk(n) counts the number of ways to write n as a product of k natural numbers.
We first justify that this lengthy definition is well-defined. By ??,

F′(g)(1) = PF′(g(1))

= (PF)′(g(1)).

Since g(1) is a root of PF of multiplicity 1, we can not have that (PF)′(g(1)) = 0.
Next, observe that, in the second summation, g is always evaluated at a proper
divisor of m; since L(d) < L(m) for all proper divisors d of m, by our inductive
hypothesis g is well-defined wherever it is evaluated in ??. Lastly, since τk(n) > 0
for all n, k ∈ N, each of the fractions in the second summation is well defined. Thus
g(m) exists and is uniquely defined for each m ∈ N.

We now show that, under the definition provided by ??, F(g)(m) = 0 for all m ∈
N. We begin by multiplying both sides of ?? by −F′(g)(1) and adding g(m)·F′(g)(1)
to both sides. This yields

(5.16) 0 =

(
n∑

i=1

iAi(1)g(1)i−1g(m)

)
+

 n∑
j=0

Aj(m)g(1)j

+

 ∑
d1d2...dn+1=m

d1,d2,...,dn+1 6=m

A0(d1)g(d2d3...dn+1)

τn(m/d1)
+ · · ·+ A0(d1)g(d2)g(d3)...g(dn+1))

τ1(1)

 .
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Now, by using the fact that τk(n) counts the number of ways to write n as a
product of k natural numbers, we can represent the third sum by ∑

d1d2=m
d1,d2 6=m

A1(d1)g(d2)

+

 ∑
d1d2d3=m
d1,d2,d3 6=m

A1(d1)g(d2)g(d3)



+ · · ·+

 ∑
d1d2...dn+1=m
d1,...,dn+1 6=m

A1(d1)g(d2)...g(dn+1)

 .

Lastly, observe that each of the terms in the first and second summations of ??
corresponds to exactly one of the factorizations d1, d2, . . . , dn+1 where dk = m for
some 1 ≤ k ≤ n+1; that is, the first and second sums are exactly the “extra” terms
we excluded when we specified that d1, d2, ...dn+1 6= m. Combining these facts, we
can rewrite ?? as

0 = A0(m) +

( ∑
d1d2=m

A1(d1)g(d2)

)
+

( ∑
d1d2d3=m

A1(d1)g(d2)g(d3)

)

+ · · · +

 ∑
d1d2...dn+1=m

A1(d1)g(d2)...g(dn+1)



= A0(m) + (A1 ∗ g)(m) + (A2 ∗ g∗2)(m) + · · ·+ (An ∗ g∗n)(m),

which is our desired result. �

By repeated application of ??, we also have the following corollary:

Corollary 5.17. Let F ∈ A[X] such that PF has n simple roots. Then F has at
least n roots, counted with multiplicity.

Note that we have shown that the existence of a simple root of PF is a sufficient
condition for F to have a root, but this condition is by no means necessary. The
complexity in finding a necessary and sufficient condition for F to have a root stems
largely from the existence of non-invertible arithmetic functions, as we stated in
Section 3.

6. The Growth of Arithmetic Functions

Having examined the elements of A algebraically, we now consider them analyt-
ically, and explore several techniques for quantifying their behavior.

We begin with a definition which will form the core of this section:

Definition 6.1. Let f, g ∈ A. We say f is an average order of g if

lim
x→∞

∑
n≤x

f(n)∑
n≤x

g(n)
= 1.
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Figure 1. The sum of τ(n) over all n ≤ x can be interpreted
as counting the lattice points under the hyperbola ab = x. Here
x = 12 and the number of points is 35.

Average orders allow one to “smooth out” the erratic behavior of an arithmetic
function, in the sense that arithmetic functions with unpredictable growth often
have average orders with predictable growth.

As a classical example, we present the following proof of an average order of τ ,
the divisor-counting function:

Theorem 6.2. The function log(n) is an average order of τ .

Proof. We wish to find a function f ∈ A which satisfies the asymptotic formula∑
n≤x

f(n) ∼
∑
n≤x

τ(n).

Since τ(n) =
∑
ab=n

1, this can be rewritten as

∑
n≤x

f(n) ∼
∑
ab≤x

1.

We will follow Dirichlet’s proof, a method now commonly called the Dirichlet
hyperbola method. Observe that the right-hand side can be interpreted as counting
the number of lattice points under the hyperbola ab = x (See Fig. 1).

In order to enumerate these points, we divide the figure into three overlapping
sectors: where a ≤

√
x, where b ≤

√
x, and where a, b ≤

√
x. We then subtract off
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the overlap to obtain the formula:∑
n≤x

τ(n) =
∑
ab≤x

1

=
∑

a≤
√
x

∑
b≤ x

a

1 +
∑
b≤
√
x

∑
a≤ x

b

1−
∑

a,b≤
√
x

1

=
∑

a≤
√
x

⌊x
a

⌋
+
∑
b≤
√
x

⌊x
b

⌋
−
⌊√

x
⌋2

= 2x
∑

a≤
√
x

⌊
1

a

⌋
−
⌊√

x
⌋2

= O(x log x).

Since x log x =
∑
n≤x

log x, we obtain that

lim
x→∞

∑
n≤x

log(x)∑
n≤x

τ(n)
= 1.

Hence log n is an average order for τ.
�

The above argument is in fact generalizable to a class of arithmetic functions
which we now define:

Definition 6.3. The k-th Piltz function τk, defined for each k ∈ N, counts the
number of ways to express n as an ordered product of k natural numbers. For
example, τ3(6) = 9 because

6 = 1 · 1 · 6
= 1 · 6 · 1
= 6 · 1 · 1
= 1 · 2 · 3
= 1 · 3 · 2
= 2 · 1 · 3
= 2 · 3 · 1
= 3 · 1 · 2
= 3 · 2 · 1.

(To justify the reuse of notation, observe that τ as defined in Definition 2.4(iii)
is equal to τ2.) Additionally, for each k ∈ N, the k-th divisor summatory function
is denoted Dk and given by the sum

Dk(x) =
∑
n≤x

τk(n).
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By considering the sum as an enumeration of the number of k-dimensional lattice
points in Rk under the hyperbolic surface a1a2...ak = x, it can be shown that

Dk(x) = xPk(log x) + ∆k(x),

where Pk is a polynomial of degree k− 1 and ∆k is an error term. Thus (log n)k−1

is an average order for τk.
One can use similar techniques to bound the values of arithmetic functions, as

demonstrated by the following analysis of the behavior of %:

Theorem 6.4.

(i) For all x > 3,
∑
n≤x

%(n) ≤ (x− 1)blog2(x)c.

(ii) For all x ∈ N,
∑
n≤x

%(n) ≥ x(log x− 1).

Proof. (i) For x ∈ N, let P (x) =
∑
n≤x

%(n). First, observe that since

%(n) =
∑
d|n
d<n

%(d)

=
∑
d1|n
d1<n

∑
d2|d1

d2<d1

%(d2)

= . . .

=
∑
d1|n
d1<n

∑
d2|d1

d2<d1

. . .
∑

ds−1|ds

ds−1<ds

1,

we may characterize % combinatorially as the number of ordered factorizations
of n. Thus, P (x) counts the number of ordered tuples of natural numbers
(excluding 1 in each tuple and including the empty tuple {Ø}) whose product
does not exceed x. Since the maximum length of such a tuple is blog2(x)c (as
long as x ≥ 4) and each natural number in such a tuple must be less than or
equal to x, we may thus bound P (x) above by (x− 1)blog2(x)c.

(ii) As above, we will use the combinatorial interpretation of % and P. Fix x ∈ N.
Of length 0, there is one tuple whose product is at most x, and of length 1
there are x− 1 tuples whose product is at most x. Also, for each n ≤ x, there
are

⌊
x
n

⌋
− 1 tuples of length 2 whose product is at most x. Summing these

three terms together, we obtain that

P (x) ≥ 1 + (x− 1) +
∑
n≤x

(⌊x
n

⌋
− 1
)

=
∑
n≤x

⌊x
n

⌋

≥

∑
n≤x

x

n

− x
≥ x log x− x
= x(log x− 1).

�
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While these are loose bounds, this example demonstrates the basic methods
which can be used to treat arithmetic functions analytically.
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