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Abstract. Hex is a game invented in the 1940s with the non-trivial property

that no completed game can end in a tie. This paper studies the this fact,
dubbed the Hex theorem, at its graph-theoretic roots, as well as its topolog-

ical consequences, and presents an original generalization to the torus which

preserves this property.
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1. Introduction

Hex is a two-player abstract strategy game played on a rhombic board of hexagons
called hexes, most commonly of size 11 by 11. The two players, typically denoted
by Red and Blue, take turns claiming hexes by placing counters on any unoccupied
space on the board. The game continues until either Red has claimed an unbroken
chain of hexes connecting the top and bottom boundaries of the board, or Blue has
claimed an unbroken chain of hexes connecting the left and right boundaries of the
board. Figure 1.1 shows a completed game in which Blue has won.

Hex was invented in 1942 by Piet Hein, and again independently in 1948 by
John Nash. Nash studied the game from a game-theoretic standpoint, showing via
a simple strategy-stealing argument that the second player has no winning strategy,
and, moreover, with perfect play the first player can always win [1]. In this paper,
however, we will not concern ourselves with the game-theoretic aspects of Hex, but
rather with its topological properties. We will use this paper’s foundational result
to give elementary proofs of several classical results of algebraic topology, including
a proof of the Jordan separation theorem. Next, we will explore generalizations of
Hex, both in higher dimensions and on other topological spaces. In order to make
such generalizations, we will make use of the notions of homology and cohomology,
which we will exposit in Section 6.
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Figure 1.1. A completed game of Hex on an 11×11 board. Blue
has won by connecting the left side (West) to the right side (East).

We begin by rigorously defining the Hex board as a graph imbedded in the plane,
following with some variation the construction introduced by David Gale in [2]:

Definition 1.1. Let n ∈ N.
(i) We call two points (a1, a2), (b1, b2) ∈ N2 comparable if a1 < b1 and a2 < b2,

or a1 > b1 and a2 > b2.
(ii) The n×n Hex board is the graph Hn with vertex set {(a1, a2) | a1, a2 ∈ N, 1 ≤

a1 ≤ n, 1 ≤ a2 ≤ n}. We call two points (a1, a2), (b1, b2) ∈ Hn adjacent if
they are comparable and max{|a1 − b1|, |a2 − b2|} = 1; between such vertices
we draw an edge. We call the sets {(i, n)}, {(n, i)}, {(i, 1)}, and {(1, i)} North,
East, South, and West, respectively.

(iii) A game of n × n Hex is a map Γ : Hn → {0, 1, 2}, realized as a coloring of
each vertex as uncolored, red, or blue. We say the game is a win for Red
if there exists a connected subset Q ⊂ Hn such that Γ(Q) = {1}, and two
points (a, n), (b, 1) ∈ Q which are in North and South, respectively. Similarly,
Γ is a win for Blue if Q ∋ (1, a), (n, b) is connected and Γ(Q) = {2}. Lastly, a
full game of Hex is a game Γ for which Γ−1({0}) = Ø.

The graph outlined in Definition 1.1 does not resemble exactly the classical Hex
board; however, the two boards are graph isomorphic, and in fact it was this square
board which Nash originally considered. It is pictured in Figure 1.2.

Some natural questions which emerge in a serious consideration of Hex include:

Question 1.2.

1. Is a full game of Hex always a win for Red or Blue?
2. Can the discrete nature of Hex be used to prove results in indiscrete contexts?
3. Can the Hex board be generalized to higher dimensions, other spaces, and higher

player counts in such a way that its crucial properties are preserved?
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Figure 1.2. The same Hex game as in Figure 1.1, represented on
the square Hex board.

We reserve a treatment of the last two questions for later in this paper. The
first question, however, is a surprisingly deep result, and we waste no more time in
investigating it.

2. The Hex Theorem

In playing Hex, one quickly notices that the most “offensive” moves and the
most “defensive” moves tend to be the same. Intuitively, this makes sense; we
would expect that to connect North to South is to block off our opponent from
connecting East to West, and vice versa. Moreover, we might suspect that this
local principle is reflected in the overall game structure, so that one player wins if
and only if the other loses. This turns out to be true in the following sense:

Theorem 2.1 (Hex theorem). Let n ∈ N and let Γ be a full game of n × n Hex.
Then Γ is a win for exactly one player.

We have in fact stated the Hex theorem in a slightly stronger form than it is
usually stated; in most contexts the Hex theorem only guarantees that G is a win
for at least one player. We will make no use of this weaker form.

Proof. We will first show that any full game of Hex has at least one winner, and
then that any full game has at most one winner.

To show the former, we begin with some terminology: given a full game Γ we
call an edge of the board uniform if it connects a red vertex to a red vertex or a
blue vertex to a blue vertex, and mixed if it connects a red vertex to a blue vertex.
We next augment the Hex board, adding 4n extra vertices in a “box” around the
board, and connect them with edges to make an (n+2)×(n+2) Hex board without
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Figure 2.1. An augmented version of a full 5× 5 game of Hex.

the corner vertices. We color the vertices directly above North and below South
red, and those directly left of West and right of East blue. The result of this is
shown for an arbitrary full game where n = 5 in Figure 2.1.

Now, we present an algorithm for finding a winning path for one of the players,
adapted from that of David Gale in [2]. We begin by shading the triangular face
in the bottom right. We next shade the triangular face adjacent to that face which
shares a mixed edge with that face. Continuing, at each triangular face we en-
counter, we shade the face adjacent to that face (other than the face we shaded the
step before) which shares a mixed edge with that face. The algorithm terminates
if no mixed edge exists, or if the path leaves the board or returns to an already
shaded face. Figure 2.2 gives the result of this process with our 5× 5 example.

Now, we note the following facts about this process:

(i) Since the number of faces is finite, the process will always terminate in a finite
number of steps.

(ii) At each step, we enter a triangular face with at least one red vertex and one
blue vertex. Regardless of the color of the third vertex, therefore, the face
will always have a mixed edge other than the edge we just crossed. Thus the
algorithm never terminates in the case that no mixed edge exists.

(iii) In order to enter any face, that face cannot have 3 blue or 3 red vertices; thus
it must have 2 of one color and one of the other. This implies that for any
face in our path, two of its edges are mixed and the third edge is uniform.
In passing through this face, we enter across one of the mixed edges and
exit across the other; if we are then to return to this face, we would have to
cross the third uniform edge, which by definition the algorithm never does.
Thus the algorithm also cannot terminate in the case that we return to a
previously shaded face (other than the face at which we began; however, note
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Figure 2.2. The same board as Figure 2.1, with the shading al-
gorithm completed and the given path outlined.

that in order to return to where we started we would have to cross from the
unbounded face, which the algorithm also never does).

(iv) Lastly, the resultant set of shaded faces has as boundary uniform edges only;
since at the beginning of the algorithm the left side of the set is red and the
right side of the set is blue, this is preserved throughout the algorithm, so
that the final set has all red vertices on one side and all blue vertices on the
other.

Together, the facts (i),(ii),(iii) imply that the algorithm terminates when the
path leaves the board, which can only happen at the bottom-left, top-left, or top-
right mixed edges. By fact (iv), in the first two of these cases, the left side of the
set of shaded faces gives a winning set for Red; in the third case, the right side of
the set of shaded faces gives a winning set for Blue. Thus a winning set always
exists for at least one player.

To complete the proof, we show that any full game of Hex has at most one
winner. In order to show this, we suppose for contradiction that an n × n Hex
board exists which is a win for both Red and Blue. We again augment this board,
this time adding four single vertices adjacent to North, South, East, and West, and
four edges connecting them in a cycle. We then add a fifth vertex outside of the
plane, and connect it to each of the four additional vertices. The result of this is
depicted in Figure 2.3.

Now, considering the non-intersecting paths by Red and Blue within the board
as well as the additional edges we added, we have constructed a planar embedding
of the complete graph K5, which is a contradiction as no such embedding exists.
Therefore no Hex board exists which is a win for both players. This result along
with the previous one implies the theorem.

□
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Figure 2.3. A different augmentation of a full Hex game, giving
an impossible planar embedding of K5. Note that the Red and
Blue paths by hypothesis do not intersect.

The above proof shows that the theorem is fundamentally graph theoretic; how-
ever, in the next section we will show it has topological significance as well.

3. Topological Applications of the Hex Theorem

In addition to demonstrating that any game of Hex can be won by at most player,
Figure 2.3 suggests a continuous analog, namely that if P1, P2 are paths connecting
the top and bottom sides and the left and right sides of a square, respectively,
then they must intersect in at least one point within the square. As in the proof
of Theorem 2.1, if this were untrue then we could construct a planar embedding
of the nonplanar graph K5. In this section, we will follow this idea of applying
the discrete Hex theorem to nondiscrete contexts, in order to show two major
topological applications. The first of these is the classical result due to L. E. J.
Brouwer:

Theorem 3.1 (Brouwer fixed-point theorem). Let f : I2 → I2 be continuous.
Then there exists x ∈ I2 such that f(x) = x.

Again following the work of Gale, we shall in fact show that Theorem 3.1 and
Theorem 2.1 are “equivalent” in the sense that either can be proven rather easily
using the other. The proofs we present are somewhat streamlined versions of those
in [2].

Proof of Theorem 3.1 from Theorem 2.1. For setup, let ε > 0 and write f = (f1, f2).
Since f is continuous and I2 is compact, f is uniformly continuous, so that there
exists δ > 0 such that δ < ε and if x, y ∈ I2 such that ||x − y|| < δ then ||f(x) −
f(y)|| < ε. Fix n ∈ N such that 1/n < δ/

√
2.
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Now, suppose for contradiction that for all x ∈ I2 we have ||f(x) − x|| ≥ ε
√
2.

This further implies that for each vertex v = (v1, v2) in the n×n Hex board Hn, we
have max{|f1(v/n)− v1/n|, |f2(v/n)− v2/n|} > ε. We construct a full game of Hex
Γ as follows: for each v ∈ Hn, color v red if |f1(x)− x1| ≤ |f2(x)− x2| and color v
blue otherwise. We will show that Γ is a win for neither player, contradicting the
Hex theorem.

First note that for any blue vertices v = (v1, v2), w = (w1, w2) ∈ Hn such that

f1(v/n)− v1/n ≥ ε and w1/n− f1(w/n) ≥ ε,

we cannot have that v, w are adjacent. This is because if such v, w were adjacent,

then we would have ||v/n− w/n|| ≤
√
2

n < δ but

||f(v/n)− f(w/n)|| ≥ max{|f1(v/n)− f1(w/n)|, |f2(v/n)− f2(w/n)|}
≥ |f1(v/n)− f1(w/n)|
≥ |f1(v/n)− v1/n+ v1/n− w1/n+ w1/n− f1(w/n)|
≥ f1(v/n)− v1/n+ w1/n− f1(w/n)− (w1/n− v1/n)
≥ 2ε− 1/n

≥ ε,

violating the uniform continuity of f ; thus v, w are not adjacent. Using a similar
argument, we may show that if v, w are blue and satisfy f2(v/n) − v2/n,w2/n −
f2(w/n) ≥ ε, then v, w cannot be adjacent.

Now, let S be a set of blue vertices in Hn intersecting both East and West.
Observe that for any vertex v in East, we cannot have v1/n − f1(v/n) ≥ ε as
this would imply f(v/n) ̸∈ I2, and similarly for any vertex in West we cannot have
v1/n−f1(v/n) < ε. Thus S must at least one vertex which satisfies each of the above
inequalities. But since such vertices cannot be adjacent by our above argument, S
cannot be connected. Hence Γ cannot be a win for Blue. But by a similar argument,
Γ also cannot be a win for Red. Thus Γ violates the Hex Theorem, a contradiction;
our hypothesis, that for all x ∈ I2 we have ||f(x) − x|| ≥ ε

√
2, must therefore be

false. Since our choice of ε was arbitrary and I2 is compact, therefore, the proof is
complete.

□

The proof of Theorem 3.1 from Theorem 2.1 is lengthier, but straightforward
given the following two lemmas:

Lemma 3.2. Let n ∈ N and suppose f is a mapping of Hn into R2. Then there
exists a unique piecewise linear map f△ : [1, n]2 → [1, n]2 which is continuous.

We will call this extension f△ the simplicial extension of f on [1, n]2.

Proof. Since Hn is a triangulation of [1, n]2, any point x ∈ [1, n]2 lies in the convex
hull of three unique and mutually adjacent vertices v1, v2, v3. By defining f in this
convex hull as the unique plane containing the three vertices, and repeating this
for each triangular face of Hn, we obtain a piecewise linear map. Moreover, f is
trivially continuous on the faces of Hn, and also continuous on its edges since the
planes intersect on the edges of of Hn. □
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Lemma 3.3. Let x1, x2, x3 ∈ R2, put f(xi) = yi, and let f△ be the simplicial
extension of f on the convex hull of x1, x2, x3. Then f△ has a fixed point if and
only if the convex hull of {yi − xi} contains zero.

Proof. Since f△ is piecewise linear and continuous, for any point z, we have that
z lies in the convex hull of {xi} if and only if f△(z) − z lies in the convex hull of
{yi − xi}. Thus 0 lies in the latter if and only if there exists z in the former such
that f△(z) = z. □

We now proceed to the proof of the Hex theorem from the Brouwer fixed-point
theorem:

Proof of Theorem 2.1 from Theorem 3.1. Let Γ be a full game of Hex on Hn, and
suppose for contradiction that Γ has no winner. This implies no connected set of
red vertices intersects both North and South, and similarly no connected set of
blue vertices intersects both East and West. We define a function f : Hn → Hn as
follows: for v ∈ Hn,

• if v is red, then f translates v up by one unit if v is connected to South by
a set of red vertices, and down one unit otherwise; and
• if v is blue, then f translates v to the left one unit if v is connected to West
by a set of blue vertices, and to the right one unit otherwise.

First, note that a vertex in North is never translated up by f , since if it were
that would imply that a connected set of red vertices intersects North and South,
contradicting our hypothesis that Γ has no winner. Similarly, the vertices in East,
South, and West are never translated right, down, or left, respectively. Thus f maps
Hn to itself. Secondly, observe that two adjacent vertices of Hn are never translated
in opposite directions, since any connected set containing one must contain the
other. Thus for any u, v, w ∈ Hn, the convex hull of {f(u), f(v), f(w)} cannot
contain zero.

By Lemma 3.3, the above facts imply that the simplicial extension f△ of f can
have no fixed point, a contradiction of Theorem 3.1. Hence Γ must be a win for at
least one player.

□

The second direction of the above proof makes heavy use of the fact that all
bounded faces of Hn are triangular; this fact will prove crucial in the following
sections.

For a second application of the Hex theorem to general topology, we present
a proof of the Jordan separation theorem given the Hex theorem, a modification
of an argument due to Maehara [3]. The Jordan separation theorem is a slightly
weaker form of the Jordan curve theorem, famous for its simple statement and
elusive proof. We state it thus:

Theorem 3.4 (Jordan separation theorem). Let γ : S1 → R2 be continuous and
injective. Then the set R2 \γ(S1) has exactly two components, exactly one of which
is bounded.

Proof. We begin by considering a Jordan curve in the plane, i.e., the image C
of a continuous injection γ : S1 → R2. Let πiγ : S1 → R denote the projec-
tion of γ into the i-th coordinate. Note that both π1γ and π2γ are continuous
functions and their shared domain S1 is compact; thus we may choose A1, A2 ∈
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π1γ(S
1) such that A1 = inf{π1γ(x) : x ∈ S1} and A2 = sup{π1γ(x) : x ∈ S1}, and

B ∈ R such that C ⊂ [A1, A2]× [−B,B]. For later convenience, we fix the following
points:

• a = (a1, a2) ∈ C such that a1 = A1;

• b = (b1, b2) ∈ C such that b1 = A2;

• N = (1/2(A1 +A2), B);

• S = (−1/2(A1 +A2), B);

• l = γ(r) for r ∈ S1 such that π1γ(r) = 1/2(A1+A2) and π2γ(r) is maximal;

• m = γ(s) for s ∈ S1 such that π1γ(s) = 1/2(A1 +A2),
there exists an arc C ′ ⊂ C such that a, b ̸∈ C ′,but l,m ∈ C ′,
and π2γ(s) is minimal;

• p = γ(t) for t ∈ S1 such that π1γ(t) = 1/2(A1 +A2),
there exists an arc C ′ ⊂ C such that a, b, l ̸∈ C ′,but p ∈ C ′,
and π2γ(t) is maximal;

• q = γ(u) for u ∈ S1 such that π1γ(u) = 1/2(A1 +A2),
there exists an arc C ′ ⊂ C such that a, b ̸∈ C ′,but p ∈ C ′,
and π2γ(u) is minimal.

Intuitively, the points a, b represent the leftmost and rightmost points of C, and
the points N,S are upper and lower bounds for π2γ. This divides C into a “top”
and “bottom” arc; the points l,m are the y-maximal and y-minimal points of the
top arc and p, q are the y-maximal and y-minimal points of the bottom arc. This
is depicted in Figure 3.1, adapted from Maehara.

Now, in order for the theorem to be proved, we need to show that (i) R2 \ C
has exactly one unbounded component, and (ii) there exists a unique bounded
component of R2 \C. The proof of fact (i) follows in a straightforward manner from
the fact that C is bounded and R2 is unbounded. We will show that the negation
of fact (ii) implies the negation of the Hex theorem, giving a contradiction.

Let U denote the component of R2 \ C containing the midpoint x of m, p, and
suppose for contradiction that U is unbounded. In particular, U is then not bounded
by [A1, A2]× [−B,B], so there exists v ∈ U \ [A1, A2]× [−B,B]. Since C is closed
and R2 is locally path connected, we have U is path connected, so a path α exists
between x and v, which must intersect the boundary D of [A1, A2] × [−B,B].
Suppose without loss of generality that α first intersects D on its lower half; there
then exists a path α′ from this intersection to s containing neither of a, b.

Now, let ϕ1, ϕ2 : [−1, 1] → [A1, A2]× [−B,B] be two continuous functions with
images

ϕ1([−1, 1]) = nl ∪
>
lm ∪mx ∪ α′,

ϕ2([−1, 1]) =
>
ab,
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Figure 3.1. A Jordan curve C, annotated with bounds and points
relative to our proof.

where the notation
>
ab denotes the smallest connected subset of C containing a, b.

By construction, ϕ1 connects the top of [A1, A2] × [−B,B] to the bottom side,
and ϕ2 connects its left side to its right side; moreover, by our hypothesis, these
paths do not intersect. Since both ϕi are continuous functions on compact sets,
their images are compact as well, so that there exists some δ > 0 such that for all
p1 ∈ ϕ1([−1, 1]), p2 ∈ ϕ2([−1, 1]) we have ||p1 − p2|| > δ. Let k ∈ N be such that

||(A1,−B)− (A2, B)||
k − 1

< δ,

and let H denote the image of the k × k Hex board under the linear mapping

(x, y) 7→
(
A2 −A1

k
x+A1,

2B

k
y +B

)
,

which intuitively “fits” Hk “onto” [A1, A2] × [−B,B]. Now, we form two subsets
P1, P2 ⊂ H as follows; for each z ∈ H, we put z ∈ P1 if there exists

z′ ∈ ϕ1([−1, 1]) such that ||z − z′|| < δ/2,

and z ∈ P2 if there exists

z′ ∈ ϕ2([−1, 1]) such that ||z − z′|| < δ/2.

Note that, by our choice of k, P1 and P2 are disjoint, and by the continuity of ϕ1, ϕ2
they are both connected. Lastly, P1 connects the top part of H to the bottom, and
P2 connects its left and right sides. Since H is graph isomorphic to the Hex board
Hk, then, we can use P1, P2 to color Hk so that both Red and Blue have winning
paths, contradicting the Hex theorem. Thus U must be bounded.

The next part of the proof, that B is the sole bounded component of R2 \ C,
follows a similar theme. For if a second bounded component W existed, then we
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could construct two non-intersecting paths as follows: ϕ1 is given by the path

nl ∪
>
lm ∪mp ∪>pq ∪ qs, and ϕ2 connects a to b and lies entirely within W . Then,

choosing k as above, we can use these paths to construct a full game of Hex with
two winners. Thus U is the unique bounded component of R2 \C, and the theorem
is proved. □

The results of Theorem 3.1 and Theorem 3.4 show that the Hex theorem is in
fact a rather deep observation which has consequences in contexts outside of its
discrete graph-theoretic construction. In the next section, however, in order to get
a better idea of what gives the game this property, we will return to the context of
graph theory and attempt to find generalizations of Hex, both in the plane and on
a bigger class of topological spaces.

4. Generalizing Hex on the Plane

To begin generalizing the ideas of Hex to a broader class of graphs, we will need
a few initial definitions:

Definition 4.1. Let G be a planar graph with vertex set V, embedded in the plane
without intersection. The boundary ∂G of G (with respect to the given embedding)
is the set of vertices in V which are adjacent to the unbounded region of the plane.

We will define our generalization of Hex on the set of connected planar graphs.
On such a graph G, we can cover ∂G by four sets N,E, S,W, and then “play Hex”
on G by coloring vertices red or blue until there exists either a red path connecting
N and S or a blue path connecting E and W. Figure 4.1 depicts an example of this
sort of game; we will define it more precisely as follows.

Definition 4.2. Let G be a connected planar graph, and let N,E, S,W ⊂ ∂G be
connected sets such that each of N ∩ E,E ∩ S, S ∩W, and W ∩ N are nonempty
and the four sets together cover ∂G. Then a game of Hex on G is a map ΓG :
G → {0, 1, 2}. We say ΓG is a win for Red if there exists a connected subset
Q ⊂ G such that ΓG(Q) = {1}, and two vertices v1, v2 ∈ Q which are in N and
S, respectively. Similarly, ΓG is a win for Blue if there exists a connected subset
Q ⊂ G such that ΓG(Q) = {2}, and two vertices v1, v2 ∈ Q which are in E and W ,
respectively. Again, a full game of Hex is a game ΓG for which Γ−1

G ({0}) = Ø.

In order for this to be a “good” generalization of Hex, we would like to preserve
the main property of Hex, that no ties can occur. This is given by the following
condition on G:

Theorem 4.3. Let G be a connected planar graph with boundary covered by sets
N,E, S,W as given in Definition 4.2, and let ΓG be a full game of Hex on G. Then
ΓG is a win for exactly one player if G contains an induced subgraph G′ such that
∂G′ = ∂G and each face of G′ is triangular.

Proof. We will show the conclusion given that each face of G is triangular. This
gives the result because if some subgraph of G with the same boundary of G is a
win for some player, then G is also a win for that player. Note that by a similar
argument as that in Theorem 2.1, we have that ΓG is a win for at most one player,
since if not we could construct a planar embedding of K5 using the winning paths
for Red and Blue. Thus we need only show that ΓG is a win for at least one
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Figure 4.1. (See Definition 4.2) An arbitrary connected planar
graph with boundary regions N,E, S,W. Note that the boundary
regions must cover ∂G with overlap. By Theorem 4.3, this game is
a win for exactly one player (here Blue), since all bounded faces
are triangles.

player. To do this, we construct a generalization of the algorithm presented in
the proof of Theorem 2.1. This is done by first adding a vertex in the unbounded
region of the plane for each vertex in N,E, S,W, with vertices in multiple sets
being “double-counted”. We connect each of these extra vertices in a cycle, and
triangulate the resultant annular region between G and this cycle graph. The
augmentation is finished by coloring the vertices corresponding to N and S red and
those corresponding to E and W blue. With this augmentation, we can then follow
an analagous algorithm on the augmented graph to that on the Hex board, this
time beginning on any triangular face whose vertices intersect two opposite-colored
boundary regions. The result of such an algorithm is depicted in Figure 4.2.

Now, by similar arguments to those in the proof of Theorem 2.1, the set of shaded
faces terminates at one of four edges at the intersections of N,E, S, and W, and
aside from these edges must be bounded by uniform edges only. Thus it is bounded
by a sequence of red vertices connecting N and S or a sequence of blue vertices
connecting E and W, so that ΓG must be a win for at least one player.

□

Note that Theorem 4.3 implies the strong Hex theorem as a weak corollary. It
thus implies a very important fact, namely that the exactly-one-winner property of
the original Hex board stems from the fact that it can be thought of as a triangu-
lation of the disk. We will use this idea to generalize Hex in the following section,
by considering triangulations of arbitrary compact orientable surfaces.
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Figure 4.2. Here, we have augmented Figure 4.1 with bound-
ary vertices which are colored red or blue depending on which
boundary region they correspond to. Then we follow a similar
face-shading algorithm as in the proof of the Hex theorem.

5. Homology and Cohomology

Now, we would like to generalize our study of Hex from graphs on the plane
to graphs on more diverse spaces. In Section 6, we will define a variation of Hex
playable on the class of compact orientable surfaces; in order to do this we will need
the following brief exposition on simplicial homology and cohomology.

Definition 5.1. Let V = {v0, v1, . . . , vn} ⊂ Rn.

(i) We say two orderings of the points in V are of the same orientation if they
differ by an even permutation. Forming the quotient of V modulo this equiv-
alence relation, we obtain a two-element set; we call each element of this set
an orientation of V.

(ii) We say V is affinely independent if no hyperplane of dimension less than n
contains all vi ∈ V. Equivalently, V is affinely independent if the set {vi −
v0}1≤i≤n is linearly independent.

(iii) Let V ⊂ Rn be an affinely independent set. The smallest convex set ∆
containing all v ∈ V is called an n-simplex. The points in V are called the
vertices of ∆.

The n-simplex may be broadly thought of as the higher-dimensional generaliza-
tion of the triangle and tetrahedron. We next define simplicial complexes, which
will be the “boards” on which our generalization will be played.

Definition 5.2. An oriented n-simplex is an n-simplex together with some orien-
tation of its vertices. If C is a set of oriented simplices such that the face of each
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simplex in C is in C and the intersection of any two simplices in C is a face of each
simplex, then we call C a simplicial complex.

The above preliminary definitions, as well as the fact that any closed surface
has a decomposition into triangles, begins to suggest that a game analogous to Hex
could exist, in which players take turns claiming vertices on a simplicial complex
which covers some compact orientable surface. However, since such surfaces have
no boundary by definition, the idea of partitioning the boundary as in our general-
ization in Section 4 fails to generalize. Thus we will need to adjust the win condition
so that players attempt to go “all the way around” the surface in perpendicular
directions, rather than simply connecting two ends of a boundary. To make this
idea more precise, we continue our exposition of H1, the first homology group:

Definition 5.3. Let C be a simplicial complex.

(i) An n-chain in C is a formal linear combination of simplices in C with coeffi-
cients in Z.

(ii) Let σ be an oriented n-simplex, given by some ordering of its vertices (v0, . . . , vn).
The boundary of σ is the (n− 1)-chain defined by

∂nσ =
∑

0≤i≤n

(−1)i(v0, v1, . . . , v̂i, . . . , vn),

where (v0, v1, . . . , v̂i, . . . , vn) denotes the simplex with all vertices except vi.
If ∆ =

∑
niσi is an n-chain, the boundary of ∆ is the (n− 1)-chain

∂n∆ =
∑

(−1)i∂nσi.

It is now relatively straightforward to see that, for n = 1, the set Ker ∂1 consists
exactly of those chains of 1-simplices (i.e., straight lines) which begin where they
end; consequently, we call elements of Ker ∂n n-cycles. There is one last stop on
our exposition before we can rigorously define Hn :

Lemma 5.4. Let n ∈ N. Then ∂n∂n+1 = 0.

Proof. We proceed through the computation as follows: let σ be an (n+1)-simplex.
Then we have

∂n∂n+1σ = ∂n

 ∑
0≤i≤n+1

(−1)i(v0, v1, . . . , v̂i, . . . , vn+1)



=
∑

0≤j≤n+1

 ∑
0≤i≤n+1

i ̸=j

(−1)i(v0, v1, . . . , v̂i, . . . , v̂j , . . . , vn+1)

 .

The sum on the inside can then be divided into the cases where i < j and where
j < i; for given i, j these cancel out perfectly, as the pairs (i, j) and (j, i) both
appear in the calculation. Thus the total sum is zero, and the lemma is proved. □

Lemma 5.4 suggests the following definition, which will conclude our exposition
of simplicial homology:

Definition 5.5. Let X be a simplicial complex. The n-th homology group of X,
denoted Hn, is the quotient group Ker ∂n/ Im ∂n+1. Elements of Hn are called



THE GAME OF HEX: A STUDY IN GRAPH THEORY AND ALGEBRAIC TOPOLOGY 15

homology classes; for a cycle c, we write [c] for the class in Hn of which c is a
representative.

The abelian groups and boundary homomorphisms between them form a natural
structure called a chain complex :

· · · ∂3−→ C∗
2

∂2−→ C1
∂1−→ C0

∂0−→ 0.

By replacing the groups with their dual groups, and the homomorphisms with their
dual homomorphisms, we may “reverse” this chain and obtain a cochain complex

· · · ∂3

←− C∗
2

∂2

←− C∗
1

∂1

←− C∗
0

∂0

←− 0,

from which we can define the n-th cohomology group of C by

Hn = Ker ∂n/Im ∂n−1.

As we generalize Hex to the torus T , we will use without proof the fact that

Hn(T ) ∼=


Z if n = 0,

Z⊕ Z if n = 1,

Z if n = 2,

and that as a ring H∗(T ) is isomorphic to the exterior algebra Λ[a, b]. We shall
also use the fact that Hn, Hn are homotopy invariants, as is the cup product ∪ :
Hn × Hm → Hn+m given by the bilinear extension of the following operation on
basis elements of Hn+m(X) :

(ϕ ∪ ψ)(σ) = ϕ(σ |[v0,...,vn])ψ(σ |[vn+1,...,vm]).

This cup product on cohomology groups has a dual multiplicative structure ∩ known
as the cap product; via Poincaré duality this gives, for certain generators v, x, y, σ,

Hn(T ) ∼=


Zv, if n = 0,

Zx⊕ Zy, if n = 1,

Zσ if n = 2,

as well as that x ∩ x = y ∩ y = 0 and x ∩ y = −y ∩ x = v. Applying these facts, a
straightforward calculation gives

(ax+ by) ∩ (cx+ dy) = ad− bc = det

(
a b
c d

)
,

so that if two elements α, β of H1(T ) are linearly independent then the above
determinant is nonzero, and thus their cap product is nontrivial. This means that,
for two curves C1, C2 : S1 → T, if we let [C1], [C2] be the images of the generator of
H1(S

1) via C1, C2 respectively, then [C1]∩ [C2] is nontrivial only if C1, C2 intersect
geometrically.

Given these facts, we are ready to move to our variation of Hex on the torus.
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6. Hex on the Torus

In this section, we present one possible variation of Hex which can be played
on the torus. Since this space is without boundary, we cannot generalize Hex to it
directly; however, by appealing to the tools of homology we can define a playable
variation. Recall that a victory in Hex, both in its original form and in our general
form on triangulations of the disk, consisted of a monochromatic path connecting
two sections of the boundary. For our analog on T 2, we will instead define victory
by the completion of a monochromatic cycle representative of a given homology
class. In order to make this definition, we need the following lemma:

Lemma 6.1. Let T be the 2-dimensional torus, triangulated by a simplicial complex
X. Then there exist two sets R,B ⊂ H1(X) such that R ⊔ B = H1(X) \ {0} and,
for any classes [C1] ∈ R, [C2] ∈ B, we have that [C1] ∩ [C2] ̸= Ø.

Proof. We partition the module M = H1(T ) ∼= Zx⊕Zy into two disjoint sets R,B
which cover M \ {0} such that for any v ∈ R,w ∈ B we have v, w are linearly
independent. This can be accomplished in multiple ways; one way, for instance, is
for R to contain all elements (except for the element with all zero coefficients) whose
coefficients multiply to a non-negative integer, and for B to contain all elements
whose coeffiecients multiply to a negative integer. We then have that any two
cycles intersect algebraically if and only if their product in M is nonzero. By the
last section, this occurs if and only if the two cycles are independent; we thus have
that if a ∈ R, b ∈ B, then a, b are linearly independent and so must intersect. □

We now summit our exploration of Hex with the following definition:

Definition 6.2. Let T be the 2-dimensional torus, triangulated by a simplicial
complex X.

(i) The n-skeleton of X, denoted Xn, is the space consisting of all simplices in X
of dimension at most n. We consider X1 as a graph with vertex set X0 and
the 1-simplices of X as its edges.

(ii) A game of Hex on X is a map ΓX : X1 → {0, 1, 2} realized as before as a
coloring of each 0-simplex as uncolored, red, or blue, along with a pair (R,B)
of subsets of H1(X) which satisfy the conditions in Lemma 6.1. We say ΓX is
a win for Red if there exists a connected subset Q ⊂ X0 such that Γ(Q) = {1}
and that Q is a cycle representative of a homology class in R. Similarly, we
say ΓX is a win for Blue if a connected cycle Q ⊂ X0 exists which satisfies
Γ(Q) = {2} and is a cycle representative of a homology class in B.

Theorem 6.3. Let ΓX be a full game of Hex on a triangulation X of the torus.
Then ΓX is a win for exactly one player.

Proof. The fact that ΓX is a win for at most one player stems from Lemma 6.1;
this is because, if we have chosen R,B in the manner specified by the lemma, then,
if Red completes a cycle C ∈ R, any cycle in B must intersect C and thus cannot
be monochromatically blue. Similarly, if ΓX is a win for Blue it cannot be a win
for Red. Hence ΓX is a win for at most one player.

To show that ΓX is a win for at least one player, we follow the algorithm used
in our Hex theorem proof one final time. We begin on a triangular face of the
1-skeleton of X with at least one mixed edge; if no such face exists, then the entire
graph is monochromatic and the game clearly has at least one winner. We then
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cross the mixed edge into another triangular face; by similar arguments to those
we have made previously regarding this algorithm, there exists one unique way to
continue this process until it terminates. However, since X has a finite number of
faces and no boundary, the algorithm must terminate at a face previously visited;
moreover, this must be the face at which we began, again by similar arguments
to those made previously. This means we have completed a cycle of shaded faces;
in fact, since the set of faces is again bounded by uniformly red edges on one side
and uniformly blue edges on the other, we have completed two homologous cycles,
one red and one blue. If the class which these cycles represent is in R or B, we
have found a winning path for at least one player, so suppose not. Since R,B
cover H1(X) \ {0}, this implies that the cycle we have completed is homologous
to zero. We then repeat this algorithm, each time starting at an unshaded face
with at least one mixed edge; if at any time we complete a cycle representative of
a nonzero homology class we are done, so we need only consider the case where we
cover the entirety of X by cycles homologous to zero, collapsing any triangles with
all uniform edges to a point. Now, fix a cycle in such a coloring, and note that
it must divide T into two components. Thus any additional cycles we draw must
either be surrounded by this cycle or must completely surround it; in either case,
the shaded region remains homeomorphic to a disk. However, at the end of the
process we have assumed that the shaded region covers the entirety of T ; since T
cannot be covered by a set homeomorphic to a disk, the process can not terminate
in a finite number of steps. This is a contradiction; hence, no such coloring can
exist, so that ΓX is a win for at least one player. □

While this variation of Hex certainly presents a non-trivial application of some
of the main tools of algebraic topology, it is worth considering further that the
version of the Hex theorem outlined in Theorem 6.3 and its proof retain many of the
characteristics of the original Hex theorem. With this in mind, further investigation
could involve applying Theorem 6.3 to prove results in algebraic topology similar
to or in generalization of those in Section 3 similarly to how Theorem 2.1 can be
used to more easily prove difficult theorems.
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