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Abstract. The ultraproduct construction is of utmost importance to model

theory. In this paper we consider a particular application of the construction–

namely, the theory of enlargements– as it pertains to Abraham Robinson’s
nonstandard analysis and Ramsey theory. We will show the numerous simpli-

fications both of definitions and of proofs which this perspective affords, while

assuming only minimal background in mathematical logic and model theory.
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1. Introduction

Model theory is a relatively young branch of mathematics, with the first works
explicitly in the subject appearing within the last 80 years, and the first works
making implicit use of its techniques appearing in the early 1900s. However, thanks
to the power of its methods and a vast array of applications, model theory has
developed rapidly since its inception. The goal for this paper will be to exposit one
such application, namely Robinson’s nonstandard analysis, while assuming only
minimal experience in mathematical logic. We will accomplish this via a concise
but ground-up introduction of the ultraproduct construction, followed by a general
study of enlargements and nonstandard arguments, before finally specializing to
the hyperreals and then to Ramsey theory. We hope that, due to our development
of nonstandard theory in generality, the transition into the hyperreal field will seem
a natural application of the ideas so far explored.

The ultraproduct construction is interesting in part due to its nonconstructive
nature. Much of our exposition here will rely on the existence of a specific object–
namely, a nonprincipal ultrafilter on an infinite set– the existence of which cannot
be proved in Zermelo-Fraenkel set theory without the axiom of choice (although
we note that the full strength of choice is not required). However, despite the
somewhat immodest nature of its construction, the ultraproduct will turn out to
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be fundamental to our study of nonstandard analysis, largely due to  Lós’s theorem,
which broadly states that ultraproducts have many properties similar to those of
their factors.

The reasons for our focus on Robinson’s nonstandard analysis are threefold.
First, we recognize that much of model theory can seem highly abstract at a first
approach, and so through this application we hope to provide a concrete anchor
to other fields of mathematics. Second, as noted in our main source [1], much
of nonstandard analysis yields novel, insightful proofs of familiar facts, as well
as a host of new concepts with significant intuitive backing. Lastly, our study
of nonstandard theory in general will allow a concluding diversion into Ramsey
theory, demonstrating yet more applications of the principles we exposit in the
earlier sections and yielding an unexpected result as we return to pure mathematical
logic.

2. Ultrafilters

In the interest of brevity, we omit the standard definitions in mathematical logic
and model theory; for a detailed exposition, the reader is encouraged to consult our
source [2]. As exposited from these initial definitions alone, it is somewhat unclear
how one can construct new models from old ones. The theorems of Löwenheim-
Skolem-Tarski give the existence of models of different cardinalities of a single
theory, but for our purposes we will need a way to construct a new model from
multiple component models, in a manner analagous to the direct product in algebra.
The construction we develop in this section, namely the ultraproduct, will serve this
purpose.

How, in constructing such a composite model, do we determine the theory it
satisfies? A statement might have completely different interpretations across our
composite model’s different component models, and might state something obvi-
ously true in one model but obviously false in another. Intuitively, we would like a
statement to be true for the composite model if it is true for a“large” subset of the
set of component models. However, we will be considering products of infinitely
many models. But which subsets of an infinite set can be considered “large”?

Perhaps an appropriate axiomatization of a “large” set would be

• the whole set itself is large;
• any set containing a large subset is itself large; and
• any two large sets must have large intersection (to prevent “crowding” of

large sets).

Also, to ensure the composite model is sufficiently complete and consistent, we
should require that, if some statement holds for some subset of the component
models, then either it or its negation holds in the composite model, but not both.
This can be summarized set-theoretically by

• For any set A, either A or its complement is large, but not both.
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This is now enough to make a definition. Our formalization of “largeness” is
called a filter (or ultrafilter if it satisfies the fourth condition), and is defined thus:

Definition 2.1 (Filters & Ultrafilters). Let I be a set. A filter is a set F ⊆ 2I ,
satisfying:

(i) I ∈ F ;
(ii) If A ∈ F and A ⊆ B ⊆ I, then B ∈ F ; and

(iii) If A,B ∈ F , then A ∩B ∈ F .

If F also satisfies

(iv) For all A ∈ I, either A ∈ F or I \A ∈ F , but not both,

then we call F an ultrafilter.

A quick induction gives that property (iii) holds for arbitrary finite intersections as
well. There is much to say about filters, but in the interest of brevity we exposit
only the following two important properties:

Definition 2.2 (Properties of Filters). Let I be a set, and let F be a filter over I.

(i) F is called improper if ∅ ∈ F ; otherwise it is called proper.
(ii) F is called principal if there exists A ⊆ I such that

F = {B ⊆ I : A ⊆ B}.

Otherwise it is called nonprincipal.

Additionally, we will need the following fact:

Lemma 2.3. Let I be a set, and let E ⊆ 2I . Then the sets{
A ⊆ I : A ⊇

⋂
Yi for some finite {Yi} ⊆ E

}
and ⋂

{F : F is a filter over I containing E}

both define the same filter over I.

We will call the resulting filter the filter generated by E . We remark that in the first
expression we allow for the set {Yi} to be empty, adopting the convention that an
empty intersection of sets is equal to I.

Proof. Let G denote the first expression, and let H denote the second. We will first
show that G is a filter over I containing E :

• By our remark above, G contains I, so it has property (i).
• If A ∈ G, then A contains a finite intersection

⋂
Yi of elements of E . Thus

any superset of A also contains this finite intersection, and so lies in G as
well. Therefore G has property (ii).

• If A,B ∈ G, then A contains a finite intersection
⋂
Yi of elements of E,

and B also contains such a finite intersection
⋂
Zi. Thus A ∩ B contains

the finite intersection (
⋂
Yi) ∩ (

⋂
Zi), and so lies in G. Therefore G has

property (iii).
• Certainly any element E ∈ E is a superset of the finite intersection

⋂
{E},

so E ∈ G; thus G contains E .
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Next, we show that G ⊆ H. Let A ∈ G, so A ⊇
⋂
Yi for some finite {Yi} ⊆ E ,

and let F be a filter over I which contains E . Since F contains E , by property (iii)
the intersection

⋂
Yi lies in F . Then, since A is a superset of this intersection, by

property (ii) we have A ∈ F . Since our choice of F was arbitrary, this implies that
A lies in every filter F over I which contains E ; i.e., A ∈ H. Thus G ⊆ H. But
since we showed G is a filter over I containing E , we also have the reverse inclusion;
hence G and H define the same filter over I. �

Now, we move to two results, crucial to our study of filters. We recall from
topology that a set S has the finite intersection property if the intersection of any
finite, nonempty collection of elements of S is nonempty.

Theorem 2.4 (Ultrafilter Lemma). Let I be a set, and suppose E ⊆ 2I has the
finite intersection property. Then E is contained in some ultrafilter over I.

Proof. Write F for the filter generated by E . We note F is proper; if not then by
Lemma 2.3 there would exist some finite subset of E with empty intersection, which
is impossible since E has the finite intersection property. Now, let P be the set of
proper filters over I containing F , partially ordered by inclusion. We have P is
nonempty since it contains F . Consider a chain {Fα} in P, and write G =

⋃
Fα.

We claim G is a proper filter over I containing F :

• We have I ∈ G since I ∈ Fα for any particular α; thus G has property (i).
• If A ∈ G, then A ∈ Fα for some α, so if A ⊆ B ⊆ I then B ∈ Fα ⊆ G; thus
G has property (ii).

• If A,B ∈ G, then A ∈ Fα, B ∈ Fβ for some α, β. But since {Fα} is a
chain, we must have either Fα ⊆ Fβ or Fβ ⊆ Fα; without loss of generality
suppose the former. Then we have B ∈ Fβ ⊆ Fα, so A,B ∈ Fα. By
property (iii), then, A ∩ B ∈ Fα ⊆ G, so A ∩ B ∈ G. Thus G has property
(iii).

• We have F ⊆ G since F is contained in any Fα. We also have ∅ 6∈ G since
∅ 6∈ Fα for all α. Thus G is proper and contains F .

Thus we have that any chain in P has an upper bound in P. By Zorn’s Lemma,
then, there exists a maximal proper filter containing F ; call it H.

We will now show that H is actually an ultrafilter. Let A ⊆ I. We have two
cases: A ∈ H, A 6∈ H. In the first case, we cannot have I \A ∈ H, since this would
imply ∅ = A ∩ (I \ A) ∈ H– an impossibility since we showed H was proper. So
suppose A 6∈ H. Put E = H ∪ {A}, and let H′ denote the filter generated by E .
Then H′ is a filter which properly contains H, since it contains A while H does not;
by maximality, then, we must have that H′ is improper, i.e., ∅ ∈ H′. However, by
Lemma 2.3, this implies that ∅ contains some finite intersection {Yi} of elements
of E . These elements cannot all come from H; if they did then their intersection
∅ would also lie in H, contradicting the properness of H. Therefore Yi = A for at
least one i. Let Y =

⋂
{Yi : Yi 6= A}; then Y ∈ H and Y ∩A is empty. This implies

Y ⊆ I \A, so by property (ii) we must have I \A ∈ H. In both cases, exactly one
of A, I \A lies in H; hence H is in fact an ultrafilter.

�

Corollary 2.5. Let F be an ultrafilter over a set I. Then:

(i) F contains a singleton if and only if it contains a finite set.
(ii) F is principal if and only if it contains a finite set.
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Moreover, if I is infinite, then

(iii) there exists a nonprincipal ultrafilter over I, and
(iv) any nonprincipal ultrafilter over I contains all cofinite subsets of I.

Proof.

(i) The forward direction is immediate; to show the backward direction, let
a1, . . . , an ∈ I and suppose {ai} 6∈ F for each 1 ≤ i ≤ n. Then I \ {ai} ∈ F
for each 1 ≤ i ≤ n, so the intersection

I \ {a1, . . . , an} =
⋂

1≤i≤n

(I \ {ai})

lies in F . Thus {a1, . . . , an} 6∈ F . By contrapositive, if F contains {a1, . . . , an},
then it contains some singleton {ai}.

(ii) By (i), we need only show the result for singletons. For the forward direction,
suppose that F is principal, so there exists A ⊆ I such that

F = {B ⊆ I : A ⊆ B}.
Now, suppose for contradiction that A has two distinct elements a, a′. Then
{a}, {a′} are both proper subsets of A, so neither is large; since F is an
ultrafilter this implies that I\{a}, I\{b} are both large. Thus their intersection
I \ {a, b} is large. But this set does not contain A, a contradiction. Thus we
must have |A| = 1, so F contains a singleton.

For the backward direction, note that if F contains a singleton {a} then it
contains all supersets of {a}; moreover, since any proper subset of a singleton
is empty, and an ultrafilter is proper, F cannot contain a proper subset of
{a}. This implies that if F contains a singleton, then it consists exactly of all
supersets of that singleton, and is thus principal.

(iii) Note that if I is infinite then the collection of cofinite subsets of I has the finite
intersection property; thus by Theorem 2.4 it is contained in some ultrafilter
F . This ultrafilter cannot contain any finite subsets of I since it contains all
the cofinite subsets; thus by contrapositive of (ii) F is nonprincipal.

(iv) Follows directly from the contrapositive of (ii).

�

We conclude this section with a few notational remarks. First, recall that we
conceptualized filters as a method of determining which subsets of a set are “large”.
Indeed, hereafter we will use the phrase “A is large” to mean A lies in a given filter,
so long as the particular filter is clear from context. Secondly, we adopt the following
notation from [1]: if F is a filter on a set I and R is a unary relation on I, then we
write

JR(i)K := {i ∈ I : R(i)}.
Again, we will only use this notation when the filter and underlying set are both
clear from context.

3. The Ultraproduct

In this section, we define and show basic results regarding the ultraproduct. As
we saw in the previous section, an ultraproduct will be defined as a model composed
of other models, with the truth or falsity of a sentence ϕ determined by whether
the subset of models satisfying ϕ is large or not. Throughout this section, we fix
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a set I, an ultrafilter F on I, and a collection of models (Ai) of first-order logic
indexed by I.

Definition 3.1. Two elements (ai), (bi) ∈
∏

Ai are called F-equivalent if the set
Jai = biK is large.

Recall Jai = biK denotes the set {i ∈ I : ai = bi}.

Lemma 3.2. F-equivalence is an equivalence relation.

Proof.
For any (ai) ∈

∏
Ai we have Jai = aiK = I, which is large; thus the relation

is reflexive. For any (ai), (bi) ∈
∏

Ai, the two sets Jai = biK, Jbi = aiK are equal,
so if one is large so too must be the other; thus the relation is symmetric. Lastly,
suppose (ai), (bi), (ci) ∈

∏
Ai such that Jai = biK, Jbi = ciK are both large. Then

Jai = ciK ⊇ Jai = biK ∩ Jbi = ciK, so Jai = ciK is large. Thus the relation is
transitive. �

Motivated by Lemma 3.2, we write [ai] for the equivalence class of (ai) under this
relation. With this in hand, we are ready to define the ultraproduct.

Definition 3.3 (The Ultraproduct).
Let I be a set, let F be an ultrafilter on I, and, for each i ∈ I, let Ai be a model of
first-order logic. The ultraproduct of the Ai modulo F is the model

∏
F Ai of first-

order logic with universe {[ai] : (ai) ∈
∏
{Ai}}, and the following interpretation

mapping of the function, relation, and constant symbols of first-order logic:

(i) If f is an n-ary function symbol which is interpreted by the map fi for each
Ai, then the interpretation of f in

∏
F Ai is given by

([a1
i ], [a

2
i ], . . . , [a

n
i ]) 7→ [fi(a

1
i , a

2
i , . . . , a

n
i )].

(ii) If R is an n-ary relation symbol which is interpreted by the relation Ri for
each Ai, then the interpretation of R in

∏
F Ai is given by

R([a1
i ], [a

2
i ], . . . , [a

n
i ]) iff JRi(a1

i , a
2
i , . . . , a

n
i )K is large.

(iii) If C is a constant symbol which is interpreted by the constant ci for each Ai,
then the interpretation of C in

∏
F Ai is given by [ci].

If all the Ai are in fact the same model A, we call
∏
F Ai an ultrapower of A, and

denote it
∏
F A.

We note that in order to make well-defined arguments with ultraproducts, we
fix representatives for each [ai].

The primary reason we care about the ultraproduct construction is due to the
following theorem, due to  Lós but also called the fundamental theorem of ultra-
products:

Theorem 3.4 ( Lós). Let A be an ultraproduct of a collection {Ai} of models of
first-order logic; let ϕ be any sentence. Then A |= ϕ if and only if JAi |= ϕK is
large.

The proof of Theorem 3.4 draws heavily on the inductive structure of first-order
logic. In the interest of brevity, we will not reproduce it here, directing the reader
to [2] for a thorough treatment. For us it will suffice to say that the theorem is
easy to show for terms in first-order logic, and then a simple but somewhat tedious
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induction gives the theorem for formulas and finally sentences.

We conclude this section with a brief demonstration of the power of the ultra-
product construction– a quick proof of the compactness theorem.

Theorem 3.5 (Compactness). Let T be a theory such that any finite subset of T
is satisfiable. Then T is satisfiable.

Proof. Let I be the set of finite subsets of T ; our hypothesis is that each Σ ∈ I has
some model AΣ. Let E = {Jϕ ∈ ΣK : ϕ ∈ T} ⊆ 2I , and let F be the filter generated
by E . Now, we have that any finite intersection

Jϕ1 ∈ ΣK ∩ Jϕ2 ∈ ΣK ∩ · · · ∩ Jϕn ∈ ΣK

is nonempty since it contains the set {ϕ1, ϕ2, . . . , ϕn}. Thus, by Theorem 2.4, E lies
in some ultrafilter G.

Now, fix ϕ ∈ T . If ϕ lies in some Σ ∈ I, then AΣ |= ϕ; thus Jϕ ∈ ΣK ⊆ JAΣ |= ϕK.
Since Jϕ ∈ ΣK ∈ G, we have JAΣ |= ϕK ∈ G; by Theorem 3.4, then,

∏
G AΣ |= ϕ.

Hence
∏
G AΣ models all ϕ ∈ T .

�

4. Enlargements

In this section, we will begin our development of nonstandard theory in general-
ity, by showing that the ultraproduct allows us to construct an enlargement of any
set, with certain elements called nonstandard entities. These concepts are defined
as follows:

Definition 4.1. Let A be a set. The superstructure over A is the set U(A) obtained
by taking the power set countably many times, i.e., the set

A ∪ 2A ∪ 2(2A) ∪ · · · .

Definition 4.2. [Enlargements]

(i) Let A = (A, I1),B = (B, I2) be models of first-order logic. A transfer map is
a function (∗) : U(A)→ U(B), along with the following recursive extension to
the terms, formulas and sentences of A:
• If t is a term of A, then ∗t is the term of B obtained by replacing all

elements X ∈ U(A) with ∗X.
• If ϕ is a formula or sentence of A, then ∗ϕ is obtained by replacing all

terms t in ϕ with ∗t.
(ii) We say B is a enlargement of A if there exists a transfer map as in (i) which

satisfies:
• The transfer principle: Let ϕ be a sentence in A. Then ϕ is true iff ∗ϕ is

true.
• Countable saturation: If {Ai : i ∈ N} is a collection of nonempty subsets

of A with the finite intersection property, then
⋂
i∈N
∗Ai is nonempty.

We remark that, since the Cartesian product A×A is encoded in set theory as an

element of 22(2A)

, the functions and relations in A lie in the domain of the transfer
map– e.g., a function f : A → A has an enlargement ∗f : ∗A → ∗A in the above
definition.
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The transfer principle implies a number of useful properties of the map (∗). For
example, if A1, A2, a ∈ U(A), then we have a ∈ A1 ∪ A2 iff a ∈ A1 or a ∈ A2.
Applying transfer, this implies that ∗a ∈ ∗(A1 ∪ A2) iff ∗a ∈ ∗A1 or ∗a ∈ ∗A2. This
implies that

∗(A1 ∪A2) = ∗(A1) ∪ ∗(A2).

Identical arguments can be used to show that, for any A1, A2 ∈ U(A),

• 2
∗A1 = ∗(2A1);

• ∗(A1 ∩A2) = ∗A1 ∩ ∗A2;
• ∗(A1 \A2) = ∗A1 \ ∗A2; and
• ∗∅ = ∅.

We observe also that if S is finite, then ∗S = {∗s : s ∈ S}. This is because if
S = {s1, . . . , sn}, then membership in S can be expressed by the first-order sentence

(x = s1) ∨ (x = s2) ∨ · · · ∨ (x = sn).

(Note that for infinite S this argument breaks down at this point, since the above
sentence would be infinite and thus not a sentence of first-order logic.) Applying
transfer to the above sentence gives that x ∈ ∗S iff x = ∗si for some 1 ≤ i ≤ n.

Beyond these properties, enlargements are interesting because they can contain
additional nonstandard entities which make certain novel modes of argument pos-
sible. Some examples of these nonstandard entities are:

• Let A = (A,≤) be any totally ordered set; then any enlargement B must
contain some element which bounds A above. To show this, for each a ∈ A
let [a,∞) = {x ∈ a : a ≤ x}. Then for any finite collection {a1, . . . , an},
the intersection

⋂
i≤n

[ai,∞) is the set
[

max
i≤n

ai,∞
)

, which contains max
i≤n

ai,

so is nonempty; thus the set {[a,∞) : a ∈ A} has the finite intersection
property. Since B is an enlargement, then, there exists

b ∈
⋂
{∗[a,∞) : a ∈ A}.

By the transfer principle, the set ∗[a,∞) is the set {β ∈ B : a ≤ β};
therefore b is larger than every element of A.

• Let A be a metric space, and let a be a limit point of A. Then any en-
largement B of A contains elements “infinitely close to a” in the following
sense. For each n ∈ N \ {0}, let Un = B1/n(a). Then the collection
{Un \ {a} : n ∈ N} can be quickly shown to have the finite intersection
property. By saturation, then, there exists some b ∈

⋂
n∈N

∗(Un \ {a}). By

transfer, we have that
∗(Un \ {a}) = {b ∈ B : ∗d(a, b) < 1/n} \ {∗a},

where ∗d is the enlargement of the metric to B. This seems to imply that
the “distance” between ∗a and b is less than any positive real number, but
nonzero.

• In general, if A is any infinite set, then the set {A \ {a} : a ∈ A} will
have the finite intersection property, and so the intersection

⋂ ∗(A \ {a}) =⋂
(∗A \ {∗a}) will be nonempty. But no a ∈ A can lie within this intersec-

tion.

In order to demonstrate the existence of enlargements, we need the following
result, an immediate corollary of  Lós’s theorem:
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Corollary 4.3. Let B be an ultrapower of A, indexed by some set I. Then there
exists an elementary embedding (∗) of A into B, given by ∗a = [a], the equivalence
class of the constant sequence (a, a, a, . . .).

Proof. Let ϕ(x0, . . . , xn) be some formula of first-order logic, and let a0, . . . , an
lie in the universe of A. If ϕ(a0, . . . , an) holds, then the set Jϕ(∗(a0)i, . . . ,

∗(an)i)K
is all of I and thus large. If instead ϕ(a0, . . . , an) does not hold, then the set
Jϕ(∗(a0)i, . . . ,

∗(an)i)K is empty and thus not large. By Theorem 3.4, this implies
that B |= ϕ(∗a0, . . . ,

∗an) iff A |= ϕ(a0, . . . , an). Thus (∗) is an elementary embed-
ding. �

Theorem 4.4. Let A be a model over a countable language; let F be a nonprincipal
ultrafilter over N. Then the ultrapower

∏
F A is an enlargement of A.

Proof. For any a ∈ A, let ∗a again be the equivalence class of the constant sequence
(a, a, a, . . .). Corollary 4.3 then gives that this is an elementary embedding, so that
the transfer principle is satisfied. To show countable saturation, let {Ak : k ∈ N}
be a collection of nonempty subsets of A with the finite intersection property. Then

for each n ∈ N there exists xn ∈
n⋂
i=1

An; let x = [xn]. Now, we claim x ∈
⋂ ∗Ai.

To show this, we fix i ∈ N. Then by construction xn ∈ Ai for all i ≥ n. Thus the
set Jxn ∈ AiK is cofinite, so by Corollary 2.5 it is large. Therefore x ∈ ∗Ai. Hence⋂ ∗Ai contains x and is thus nonempty. �

Theorem 4.4 has a relatively simple statement and proof, but it will allow us to
make some highly nontrivial constructions and facilitate the remainder of the paper.

5. The Hyperreals

For this section and the next, we fix a nonprincipal ultrafilter F over N, which
exists by Corollary 2.5. Now that we have developed a sufficient amount of non-
standard theory, the definition of the hyperreal numbers is quite brief:

Definition 5.1. The hyperreal numbers are the enlargement ∗R =
∏
F R, where R

is the usual model of the real numbers over the language of first-order logic.

A hyperreal number is thus an equivalence class of sequences of real numbers,
usually identified by one of its representatives. The hyperreals inherit all the func-
tions and relations from the real numbers, and thanks to the transfer principle
satisfy all the same first-order properties. However, as mentioned in Section 4,
what makes ∗R interesting is the nonstandard entities it introduces. For instance,
R is totally ordered, so ∗R must contain some element bounding R above– we will
call such elements unlimited, and all other hyperreals limited. Moreover, since 0 is
a limit point of R, there exist nonzero elements of ∗R which are nonetheless lesser
than any positive real number; we will call such elements infinitesimal.

Our first introduction to reasoning using the hyperreals involves the following
definitions:

Definition 5.2. Let x, y ∈ ∗R.

(i) We say x, y are infinitely close if |x−y| is infinitesimal. We write x ' y. This
is an equivalence relation; we call the equivalence class of x the halo of x and
write hal(x).
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(ii) If x is infinitely close to some element of A, we write x ' A. If every element
of A is infinitely close to some element of A′, we write A ' A′. We write
hal(A) for the set

⋃
x∈A

hal(x).

An important notion when dealing with interactions between R and ∗R is the
shadow of a hyperreal number. This is defined as the unique real number infinitely
close to the given hyperreal. We conclude this section by showing that the shadow
of any limited hyperreal is well-defined.

Theorem 5.3. Let x ∈ ∗R be limited. Then there exists a unique r ∈ R such that
x ' r.

Proof. Let r = sup{α ∈ R : α < x}. Then there exists no real number strictly
greater than r and strictly less than x. This implies that x − r cannot be real;
if it were equal to some ε ∈ R, then r + ε/2 would be a real number strictly
greater than r and strictly less than x. Therefore x− r is infinitesimal. The same
argument run in reverse shows that if r is some hyperreal infinitely close to x, then
r = sup{α ∈ R : α < x}. This proves both existence and uniqueness. �

6. A Tour of Non-Standard Analysis

In this section, we present a selection of theorems of real analysis, stated and
proved with nonstandard methods. The nonstandard perspective will make some
proofs almost immediate, while others will be slightly shortened but much more
intuitive. We start by translating a few basic concepts into their analogs in ∗R:

Theorem 6.1. Let {sn : n ∈ N} be a sequence in R; let {sn : n ∈ ∗N} be its
enlargement. Then:

(i) (sn) is bounded if and only if sn is limited for all n ∈ ∗N.
(ii) (sn) converges to L ∈ R if and only if sn ' L for all unlimited n.

(iii) (sn) is Cauchy if and only if sm ' sn for all unlimited m,n.
(iv) L is a limit point of (sn) if and only if there exists unlimited n such that

sn ' L.

Proof.

(i) We have (sn) is bounded iff there exists some N ∈ N such that −N ≤ sn ≤ N
for all n ∈ N. By transfer, this is true iff −N ≤ sn ≤ N for all n ∈ ∗N as well,
that is, iff all sn are limited.

(ii) We have (sn) → L iff for all ε > 0 there exists Nε ∈ N such that if n ≥ Nε
then |sn − L| < ε. Suppose (sn) → L, and let N ∈ ∗N be unlimited; then
N > Nε for all ε > 0, so |sN − L| < ε for all ε > 0, i.e., sN ' L. Conversely,
suppose sN ' L for all unlimited N . Then for all ε > 0, there certainly exists a
hypernatural N with the first-order property that if n exceeds N then |sn−L|
does not exceed ε (take any unlimited hypernatural, for instance). By transfer,
then, there exists a natural number with this property, i.e., (sn)→ L.

(iii) We have (sn) is Cauchy iff for all ε > 0 there exists Nε ∈ N such that if
n,m ≥ Nε then |sn − sm| < ε. Suppose (sn) is Cauchy, and let N,M ∈ ∗N be
unlimited; then N,M > Nε for all ε > 0, so |sN − sM | < ε for all ε > 0, i.e.,
sN ' sM . Conversely, suppose sN ' sM for all unlimited N,M ; then there
exists a hypernatural with the first-order property that if n,m exceed N then
|sn − sm| does not exceed ε (take any unlimited hypernatural, for instance).
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By transfer, then, there exists a natural number with this property, i.e., (sn)
is Cauchy.

(iv) Suppose L is a limit point of (sn). Then for all k ∈ N there exists nk ∈ N
such that 0 < |snk

− L| < 1/k. In particular this implies that if k′ > k then
0 < |snk′ − L| < 1/k′ < 1/k. Now, let K be unlimited, and let N = nK , i.e.,
the K-th element of the enlargement of (sn). Then N > k for all k ∈ N, so
0 < |sN − L| < 1/k for all k ∈ N, i.e., sN ' L. Conversely, suppose there
exists N ∈ ∗N such that sN ' L; then for all ε > 0 there exists N ∈ ∗N such
that |sN −L| < ε. By transfer, then, there also exists such an N ∈ N for each
ε > 0.

�

Having translated these definitions into their analogs in ∗R, we move to our first
proof in real analysis using nonstandard techniques:

Theorem 6.2 (The Cauchy convergence criterion). Let (sn) be a sequence in R.
Then (sn) converges if and only if (sn) is Cauchy.

Proof. First, suppose (sn) converges to some L. Then sN ' L for all unlimited N .
For any unlimited N,M , then, sN ' L ' sM , so by transitivity sN ' sM ; thus (sn)
is Cauchy. Conversely, suppose (sn) is Cauchy, and let L = sN , where N is some
unlimited hypernatural. Then for any unlimited M , sM ' sN ' L, so sM ' L;
thus (sn) converges. �

In this new context, the Cauchy convergence criterion becomes nearly trivial,
essentially taking the form “if all sN are infinitely close to each other, then all sN
are infinitely close to some L”– and we simply take an arbitrary sN for our choice
of L! We next treat an important result concerning convergence, the Bolzano-
Weierstrass theorem:

Theorem 6.3 (Bolzano-Weierstrass). Suppose (sn) is a bounded sequence in R.
Then (sn) has a limit point L.

Proof. Take any unlimited hypernatural N ; since (sn) is bounded, we have sN is
limited. Thus, by Theorem 5.3, sN has a shadow L. This L satisfies L ' sN , and
is thus a limit point of (sn). �

Again, our nonstandard treatment makes the result almost immediate. Note
that in this case, we have not used the full strength of our characterization of limit
points in ∗R. Putting this and Theorem 5.3 to use, we obtain not just the existence
of a limit point, but rather a full characterization of the limit points of (sn)– namely,
they are exactly the shadows of the sN for all unlimited N .

Before we move to further results, we will need a translation of continuity:

Theorem 6.4. Let f : R → R. Then f is continuous at c ∈ R iff x ' c implies
∗f(x) ' ∗f(c).

Proof. The continuity of f at c is expressed by the first-order property that for all
ε > 0 there exists some δε > 0 such that if |x − c| < δε then |f(x) − f(c)| < ε.
Suppose this is true, and suppose x ' c. Then |x − c| < δε for all ε > 0, so
|∗f(x) − ∗f(c)| < ε for all ε > 0. Thus x ' c implies ∗f(x) ' ∗f(c). Conversely,
suppose ∗f(x) ' ∗f(c) whenever x ' c. Fix ε > 0. Then there exists a positive
hyperreal δε with the first-order property that if |x−c| < δε then |∗f(x)−∗f(c)| < ε
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(take any positive infinitesimal, for instance). By transfer, then, there exists a
positive real number δε with this property, so that f is continuous at c. �

Using this translation, the proofs of the following familiar theorems resemble intu-
ition much more clearly:

Theorem 6.5 (Intermediate value theorem). Let f : [0, 1] → [0, 1] be continuous
with f(0) = 0, f(1) = 1. Then for any y ∈ [0, 1] there exists x ∈ [0, 1] such that
f(x) = y.

Proof. Let N be some unlimited hypernatural. We note that for any n ∈ N there
exists k ∈ {0, 1, . . . , n−1} such that y lies between f

(
k
n

)
and f

(
k+1
n

)
, so by transfer

such a K ∈ ∗N exists for N as well. Now, we note that K
N '

K+1
N , so by continuity

f
(
K
N

)
' f

(
K+1
N

)
. Thus any hyperreal lying between the two has the same shadow

x. This implies that f(x) has the same shadow as y; since both are real we thus
have f(x) = y. �

Theorem 6.6 (Contraction mapping principle). Let f : R→ R be a Lipschitz map
with constant c < 1. Then f has a fixed point.

Proof. Fix a ∈ R, let b = |f(a)−a|, and inductively define a sequence {an : n ∈ N}
by a0 = a, an+1 = f(an). A quick induction shows that |an− an−1| ≤ bcn−1. Thus
for each n ∈ N we have

|an − a0| ≤
n∑
i=1

|ai − ai−1| =
n∑
i=1

bcn−1,

which is bounded above by b
1−c . Let N be an unlimited hypernatural; by bounded-

ness |aN − a0| is limited, so aN is as well. By transfer, we have |aN+1− aN | ≤ bcN ;
since c < 1 and N is unlimited, cN is infinitesimal, so this implies aN+1 ' aN .

Now, let x be the shadow of aN . Then x ' aN , so by continuity we have
f(x) ' f(aN ) = aN+1 ' aN ' x. Since f(x) and x are both real, we hence have
f(x) = x. �

We conclude our tour through nonstandard analysis by considering the hyperreal
translations of open and closed sets, as well as those of boundedness and compact-
ness.

Theorem 6.7 (Basic Topology). Let A ⊆ R. Then:

(i) A is open iff hal(A) ⊆ ∗A.
(ii) A is closed iff R ∩ hal(∗A) ⊆ A.

(iii) A is bounded iff ∗A contains no unlimited elements.
(iv) A is compact iff ∗A ' A.

Proof.

(i) Let A be open, and fix x ∈ hal(A); then x ' a for some a ∈ A. By openness,
there exists some real ε > 0 such that Bε(a) ⊆ A. Now, |x − a| < ε, so
x ∈ ∗Bε(a) ⊆ ∗A. Therefore hal(A) ⊆ ∗A. Conversely, suppose hal(A) ⊆ ∗A.
Then, for any a ∈ A, there exists N ∈ ∗N such that |x − a| < 1/N implies
x ∈ ∗A; take for instance any unlimited hypernatural. Thus by transfer there
exists N ∈ N such that |x− a| < 1/N implies x ∈ A, so that A is open.
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(ii) Suppose A is closed, and suppose x ∈ R∩hal(∗A). Then for all positive ε ∈ R
there exists some a ∈ ∗A such that |x− a| < ε, so by transfer the same is true
of A. Thus, for fixed ε > 0, there exists a ∈ A ∩ Bε(x). Thus x ∈ A = A.
Conversely, suppose R ∩ hal(∗A) ⊆ A, and suppose x ∈ A. Then for all n ∈ N
there exists an ∈ A such that |an − x| < 1/n. By transfer, then, if N is any
unlimited hypernatural then there exists aN ∈ ∗A such that |aN − x| < 1/N ,
i.e., aN ' x. Thus x ∈ R∩hal(∗A), so by hypothesis x ∈ A. Thus A is closed.

(iii) We have A is unbounded iff there exists an unbounded sequence {an : n ∈ N}
in A. Let N ∈ ∗N be unlimited; by our translation of bounded sequences,
aN ∈ ∗A is then unlimited. Thus A is bounded iff ∗A contains no unlimited
element.

(iv) We have ∗A 6' A iff there exists a ∈ ∗A such that a 6' A, i.e., |a − x| is not
infinitesimal for all x ∈ A. This in turn is true iff for each x ∈ A there exists
a ball Bx of radius εx centered at x not containing a. Now, we note that the
set B = {Bx(x) : x ∈ A} is an open cover of A; let {B1, . . . , Bn} be a finite
subset. If this is a subcover, then by transfer we have ∗A ⊆ ∗B1 ∪ · · · ∪ ∗Bn.
Thus a lies in some ∗Bi, so |a−x| < εi, an impossibility. Thus B has no finite
subcover, which is true iff A is not compact.

�

The last characterization, that of compactness, is often called Robinson’s crite-
rion. It is immensely useful in the simplification of certain theorems, including an
almost one-line proof of the Tychonoff theorem in topology. Another example is
that of the Heine-Borel theorem, which is usually proved using a careful, somewhat
tedious dissection argument, but which can be proven elementarily via nonstandard
arguments as follows:

Theorem 6.8 (Heine-Borel theorem). Let A ⊆ R. Then A is compact if and only
if A is closed and bounded.

Proof. Suppose A is compact, so ∗A ' A, and fix x ∈ R∩hal(∗A). Then there exist
a ∈ ∗A, a′ ∈ A such that x ' a ' a′. By transitivity, then, x ' a′; since x, a′ are
both real, this implies x = a′ ∈ A. Thus R∩hal(∗A) ⊆ A, so A is closed. Moreover,
since all elements of ∗A are infinitely close to A ⊆ R, ∗A contains no unlimited
elements; thus A is bounded.
Conversely, suppose A is closed and bounded, and fix a ∈ ∗A. Since A is bounded,
we have a is limited; let x be its shadow. Then x ∈ R and x ' ∗A, so since A is
closed we have x ∈ A. Thus a ' A, so A ' ∗A. Hence A is compact. �

7. Ramsey’s Theorem and Variation

In this conclusory section, we exposit one more interesting application of the
nonstandard approach, by proving Ramsey’s theorem, an important combinatorial
result. The theorem is stated using the following definitions and notation:

Definition 7.1. Let A be a set; for k ∈ N, we denote by
(
A
k

)
the set of subsets of

A of cardinality k.

(i) An (n, k)-coloring of A is a cover of
(
A
k

)
by n pairwise disjoint sets, i.e., a

collection C = {Ci : 1 ≤ i ≤ n} such that
(
A
k

)
⊆
⋃n
i=1 Ci and Ci ∩ Cj = ∅ for

all distinct i, j ∈ {1, . . . , n}. If n and k are left unspecified we simply call C a
coloring of A.
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(ii) If C is an (n, k)-coloring of A, we say that B ⊆ A is monochromatic if
(
B
k

)
⊆ Ci

for some 1 ≤ i ≤ n.

With this in hand, Ramsey’s theorem is stated thus:

Theorem 7.2 (Ramsey’s theorem).
Any coloring of an infinite set admits an infinite monochromatic subset.

Our proof of Theorem 7.2, adapted from [1], will go like this: let R(n, k) be
the sentence which states “any (n, k)-coloring of an infinite set admits an infinite
monochromatic subset.” Then, we show the following three steps:

(i) For all n, k ∈ N, R(1, k) and R(n, 1) hold.
(ii) For all k ∈ N, R(2, k) implies R(2, k + 1).

(iii) For all n ∈ N, n ≥ 2, R(2, k) ∧R(n, k) implies R(n+ 1, k).

These facts along with two quick inductions will imply R(n, k) for all n, k ∈ N. The
dependence of our proof on nonstandard theory largely comes from the following
lemma:

Lemma 7.3. Let A be an infinite set, along with some enlargement ∗A. Fix k ∈ N,
let C ⊆

(
A
k

)
, and let N be an unlimited hypernatural. Then there exists a sequence

{sn : n ∈ N} in A with the following property: if n1, . . . , nk ∈ N with n1 < · · · < nk,
then

{sn1
, . . . , snk+1

} ∈ C iff {sn1
, . . . , snk

, sN} ∈ ∗C.

Proof. Since A is infinite, there exists an injection f : N ⊆ A. Fix α1, α2, . . . , αk ∈
N, and for n ≥ k suppose inductively that α1, . . . , αn ∈ N are such that for all
n1 < · · · < nk+1 ≤ n we have

{f(αn1
), . . . , f(αnk+1

)} ∈ C1 iff {f(αn1
), . . . , f(αnk

), ∗f(N)} ∈ ∗C1.

Now, let ϕn(x) be the following formula:

ϕn(x) =
∧{
{f(αn1), . . . , f(αnk

), f(x)} ∈ C1 :

n1 < · · · < nk ≤ n, {f(αn1), . . . , f(αnk
), f(N)} ∈ ∗C1

}
∧
∧{
{f(αn1

), . . . , f(αnk
), f(x)} 6∈ C1 :

n1 < · · · < nk ≤ n, {f(αn1
), . . . , f(αnk

), f(N)} 6∈ ∗C1

}
.

Essentially, ϕn states that, so long as we consider subsequences of N bounded above
by n, the behavior of x with respect to C matches that of N with respect to ∗C.
We note that ϕn is in fact a formula of first-order logic; since there are only finitely
many subsequences of {1, . . . , n}, there are only finitely many sentences which ϕ
conjoins.

Now, it is certainly true that ∃N(∗ϕn(N)) holds; i.e., there exists an element of
∗N which exceeds sn and satisfies ∗ϕn. By transfer, then, there exists an element of
N which exceeds αn and satisfies ϕn. Denote this element by αn+1. By induction
this gives an infinite sequence {αn : n ∈ N}; the image of this sequence under f
satisfies the lemma. �

Now, we are ready to move to the proof:

Proof of Ramsey’s theorem. As stated previously, we proceed in three steps. Through-
out this proof, k and n are natural numbers, and A is some infinite set. We also
fix an enlargement ∗A of A, which exists by Theorem 4.4.
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Step (i). Suppose C is a (1, k)-coloring of A. This is to say that
(
A
k

)
⊆ C for some

C. But then A itself is a monochromatic subset; thus R(1, k) holds for all k.
Next, suppose C is an (n, 1)-coloring of A. This means that(

A

1

)
⊆ C1 ∪ · · · ∪ Cn

for some C1, · · · , Cn. Now, observe that, since the correspondence {a} ↔ a is
bijective, we have

|A| =
∣∣∣∣(A1

)∣∣∣∣ ≤ n∑
i=1

|Ci|;

since A is infinite, the sum on the right side is as well. Since no finite sum
of finite cardinals is infinite, this implies at least one Ci is infinite. Taking
B = {a ∈ A : {a} ∈ Ci} thus gives R(n, 1).

Step (ii). Suppose we have R(2, k); we will show R(2, k + 1). Thus we begin with

a coloring C = {C1, C2} of
(
A
k+1

)
. Fix an unlimited hypernatural N ; let

S = {sn : n ∈ N} be the sequence in A given by Lemma 7.3. Now, let
C′ = {C ′1, C ′2} be the (2, k)-coloring of S given by

{sn1
, . . . , snk

} ∈ C ′1 if {sn1
, . . . , snk

, sN} ∈ ∗C1,

and {sn1
, . . . , snk

} ∈ C ′2 otherwise. Since we assumed R(2, k), under this

coloring S has some infinite monochromatic subset B. Suppose
(
B
k

)
⊆ C ′1;

then for any {sn1
, . . . , snk+1

} ∈
(
B
k+1

)
we have

{sn1
, . . . , snk+1

} ∈
(

B

k + 1

)
⇒ {sn1

, . . . , snk
} ∈

(
B

k

)
⇒ {sn1

, . . . , snk
} ∈ C ′1

⇒ {sn1
, . . . , snk

, sN} ∈ ∗C1

⇒ {sn1
, . . . , snk

, snk+1
} ∈ C1.

Thus
(
B
k+1

)
⊆ C1. A similar chain of implications shows that if

(
B
k

)
⊆ C ′2 then(

B
k+1

)
⊆ C2. Thus B is an infinite monochromatic subset under the coloring C

as well, so that R(2, k + 1) holds.

Step (iii). Suppose R(2, k) and R(n, k) both hold. We will show R(n + 1, k) holds;
let C = {C1, . . . , Cn+1} be an (n + 1, k)-coloring of A. Then let C ′1 =⋃n
i=1 Ci, C

′
2 = Cn+1. Then C′ = {C ′1, C ′2} is a (2, k)-coloring of A, so by

R(2, k) there exists an infinite monochromatic subset B. Now, we have two

cases:
(
B
k

)
⊆ C ′1,

(
B
k

)
⊆ C ′2. In the first case, expanding definitions we get(

B
k

)
⊆
⋃n
i=1 Ci; thus by R(n, k) there exists an infinite B′ ⊆ A such that(

B′

k

)
⊆ Ci for some 1 ≤ i ≤ n. In the second case, we already have that(

B
k

)
⊆ Cn+1. Thus in both cases C admits an infinite monochromatic subset,

so that R(n+ 1, k) holds.



16 MARK SCHACHNER

Putting the above steps together, we have the following inductions:

• From (i) we get R(2, 1); this along with (ii) implies R(2, k) for all k.
• From (i) we get R(1, k) for all k; this along with the above and (iii) implies
R(n, k) for all n, k ∈ N.

This completes the proof. �

The above nonstandard methods can in fact be used to prove the following
variation of Ramsey’s theorem, studied by Paris and Harrington in [3]:

Theorem 7.4 (Strengthened finite Ramsey theorem).
Let k, n,m ∈ N. Then there exists r ∈ N such that for any (n, k)-coloring C =
{C1, C2, . . . , Cn} of {1, . . . , r} there exists a monochromatic subset B satisfying
|B| ≥ m and |B| ≥ min(B).

The nonstandard proof of Theorem 7.4 is somewhat shorter than that of Theo-
rem 7.2, but requires nonstandard theory which we will not develop here. A quick
and thorough proof using the theory of hyperfinite sets can be found in [1]. We
mention Theorem 7.4 here only for the following surprising fact: despite its appear-
ances as a relatively simple and natural statement in combinatorics, this theorem
is unprovable from the usual axioms of Peano arithmetic. This provides one last
look at the surprising power of nonstandard techniques.

8. Acknowledgments

I am deeply grateful to my mentor, Sarah Reitzes, for providing me with guid-
ance, both as I was introduced to model theory and logic and as I specialized to this
topic. I thank her, Isabella Scott, and Gabriela Pinto for their efforts to support
the logic cohort during this online REU, as well as Professor May and the numerous
other faculty who worked diligently to adapt their lectures and activities to these
times. I am also specifically grateful to Prof. Malliaris for her expertise and advice
which helped me immensely with my vision for this paper.

References

[1] Goldblatt, R. (2012). Lectures on the hyperreals: an introduction to nonstandard analysis

(Vol. 188). Springer Science & Business Media.
[2] Chang, C. C., & Keisler, H. J. (1990). Studies in Logic and the Foundations of Mathematics.

Model Theory, Third Edition, 73.
[3] Paris, J.; Harrington, L. (1977). ”A Mathematical Incompleteness in Peano Arithmetic”. In

Barwise, J. (ed.). Handbook of Mathematical Logic. Amsterdam, Netherlands: North-Holland.

[4] Chang, C. C. (1973). H. Jerome Keisler. Model theory. Actes du Congrès International des
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