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Abstract. We show that, for a generic measure preserving transformation T ,

the closed group generated by T is not isomorphic to the topological group

L0(λ,T) of all Lebesgue measurable functions from [0, 1] to T (taken with

pointwise multiplication and the topology of convergence in measure). This

result answers a question of Glasner and Weiss. The main step in the proof

consists of showing that Koopman representations of ergodic boolean actions

of L0(λ,T) possess a non-trivial spectral property not shared by all unitary

representations of L0(λ,T). The main tool underlying our arguments is a

theorem on the form of unitary representations of L0(λ,T) from our earlier

work.

1. Introduction

1.1. Two groups and some notational conventions. Let γ be an atomless

Borel probability measure on a standard Borel space X. By

Aut(γ)

we denote the topological group of all (measure equivalence classes of) measurable,

measure preserving bijections of X. The group operation in Aut(γ) is composition

and the topology is the weak topology, that is, the weakest topology making the

functions

Aut(γ) 3 T → γ
(
T (A)

)
∈ R

continuous, for Borel sets A ⊆ X. For more information on the group Aut(γ), the

reader may consult [15, Sections 1 and 2].

Let ν be a finite Borel measure on a standard Borel space Y . As usual, T stands

for the group of all complex numbers of unit length taken with multiplication. By

L0(ν,T)

we denote the topological group of all (measure equivalence classes of) measurable

functions from Y to T. The group operation on L0(ν,T) is pointwise multiplication

and the topology is the topology of convergence in measure.

The topologies on both Aut(γ) and L0(ν,T) are separable and completely metriz-

able, that is, both these groups are Polish groups.
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Since atomless Borel probability measures are isomorphic to each other, the

groups Aut(γ) are isomorphic as topological groups as γ varies over atomless Borel

probability measures. Similarly, the groups L0(ν,T) are isomorphic to each other

if ν is a finite non-zero atomless Borel measure. Notationally, our conventions will

be as follows. We fix an atomless Borel probability measure γ on X, and we will

consider Aut(γ) only for this fixed γ. Since we will allow ν in L0(ν,T) to have atoms

in some situations, we reserve the letter λ for an atomless Borel probability measure

in L0(λ,T). In fact, as it is convenient to have a certain combinatorial structure

on the space underlying λ, we will assume that λ is the “Lebesgue” measure on

the Cantor set, that is, it is the product measure on 2N = {0, 1}N of the measures

on {0, 1} assigning equal weight of 1/2 to each of the two points in {0, 1}. Taking

λ to be the Lebesgue measure on [0, 1] would be an equivalent acceptable choice.

However, this choice would be less suitable for the combinatorics of our arguments.

Underlying spaces of Borel measures are standard Borel spaces. Hilbert spaces

are taken over the scalar field of complex numbers C; in particular, L2(µ), for

a finite Borel measure µ, consists of complex valued, square integrable (measure

equivalence classes of) functions on the space underlying µ. By U(H) we denote

the group of all unitary operators on the Hilbert space H taken with the strong

operator topology.

By convention, N = {n ∈ Z | n > 0}, so 0 6∈ N in this paper. We identify n ∈ N
with the set {0, . . . , n− 1}, that is, n = {0, . . . , n− 1}; so, for example, 2 = {0, 1}.

Certain subgroups of L0(λ,T) will be used throughout, so it will be convenient

to define them here. For a finite binary sequence s ∈ 2n = {0, 1}n, for some n ∈ N,

let

(1) [s] = {α ∈ 2N | α � n = s}.

Given n, we write

Sn
for the subgroup of L0(λ,T) consisting of all functions constant on each of the sets

[s] for s ∈ 2n, that is, each element of Sn is of the form∑
s∈2n

zsχ[s]

with zs ∈ T, for s ∈ 2n, and where χ[s] is the indicator function of [s]. As a

topological group Sn is isomorphic to T2n , so it has the unique probability Haar

measure, which we denote by θ independently of n, as n will be always clear from

the context. Elements of Sn will be denoted by t.

1.2. The main theorem. Let Z be a Polish space, that is, a completely metriz-

able separable space. We adopt the following linguistic convention. A property P
of elements of Z is said to hold for a generic z ∈ Z if there is a comeager set of

z ∈ Z that have property P.

We study closed subgroups of Aut(γ) generated by elements of Aut(γ), that is,

subgroups of the form

〈T 〉c = closure
(
{Tn | n ∈ Z}

)
, T ∈ Aut(γ).
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One of the aims of the present paper is to answer the following question due to

Glasner and Weiss (and reiterated in [7] and [19, Question 1.3]) that has been

circulating for a number of years.

Is it the case that, for a generic transformation T ∈ Aut(γ), the closed subgroup

〈T 〉c generated by T is isomorphic, as a topological group, to L0(λ,T)?

The answer to the question is negative. It follows from the more general theorem

below.

Theorem 1.1. For a generic transformation T ∈ Aut(γ), the closed group gen-

erated by T is not included in the image of a continuous homomorphism from a

topological group of the form L0(ν,T), for a finite Borel measure ν, to Aut(γ).

Theorem 1.1 is deduced from Theorem 5.1, a result on Koopman representations

of L0(λ,T). Theorem 5.1 will be stated in Section 5 after we introduce the necessary

notions in Sections 3 and 4.

To describe some context for Theorem 1.1, we note that the behavior of a generic

transformation T ∈ Aut(γ) is highly nonuniform. One only needs to recall the clas-

sical theorem of Rokhlin that conjugacy equivalence classes in Aut(γ) are meager,

see [15, Theorem 2.5], or its powerful strengthening—the theorem of Foreman and

Weiss [8, Corollary 13] on non-classifiability of the equivalence relation of conjugacy

among generic T ∈ Aut(γ). In contrast to these results, a very different picture

of a uniform behavior of the groups 〈T 〉c, for a generic T , had emerged including

substantial evidence that pointed to these groups being isomorphic to L0(λ,T). Re-

sults that were part of this picture had to do with the topological group structure

of 〈T 〉c and with the dynamics of 〈T 〉c:
[1, Theorem 1], [2, Theorems 1 and 2], [10, Theorem 1.3], [11, Theorems 3.11 and

5.2], [16, Theorem 1], [18, Corollary 3.8], [19, Theorem 1.4], [20, Théorème 1.2.],

[22, Theorem 1, Corollary 2], [24, Theorem 1.3], and [25, Theorem 1.2].

Additionally, certain groups analogous to 〈T 〉c, for a generic T ∈ Aut(γ), were

determined to be isomorphic to L0(λ,T): [17, Proposition 7] and [19, Theorems 1.2].

The theorems mentioned above may have been regarded as strong indications

that a positive answer to the Glasner–Weiss question was to be expected. There

was, however, another class of results on generic transformations T that consisted

of theorems concerned with the spectral behavior of such T :

[5, Theorem 6], [13, Theorem 1], [14, Theorem 2.1 and Propositions 3.8 and 3.10],

and [23, Theorems 1 and 2].

Even though these results did not involve groups 〈T 〉c directly, it occurred to the

author quite some time ago that they did not seem to point in the same direction

as the above mentioned structural and dynamical theorems. This intuition turned

out to be correct as, ultimately, it is the spectral results with which we reach a

contradiction assuming that the answer to the Glasner–Weiss question is positive.

1.3. A brief outline. The proof of Theorem 1.1 is based on the analysis of unitary

representations of L0(λ,T) from [21]; the main theorem of that paper is restated

below as Theorem 4.1. The new theorem concerning unitary representations of
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L0(λ,T) proved here, Theorem 5.1, shows that the Koopman representations as-

sociated with ergodic boolean actions of L0(λ,T) fulfill an additional non-trivial

condition. The proof of our main result, Theorem 1.1, goes then by contradic-

tion. Assuming that its conclusion fails, we show in Lemma 6.1 that a certain

type of boolean action of L0(λ,T) would have to exist. Then, Theorem 5.1 is used

to prove that a boolean action of this type does not exist. The ergodic theorem,

Theorem 7.2, is used in the proof of Theorem 5.1.

2. Known results on genericity in Aut(γ)

In this section, we recall some results on generic transformations in Aut(γ) that

are relevant to our arguments later in the paper.

Theorem 2.1 below describes the spectral property of generic transformations in

Aut(γ), which was already briefly mentioned in Section 1.2. Theorem 2.1 asserts

independence of maximal spectral types among sequences of powers of a generic

transformation T ∈ Aut(γ). Its versions were proved in [5, Theorem 6], [13, Theo-

rem 1], [14, Theorem 2.1 and Propositions 3.8 and 3.10], and [23, Theorems 1 and

2]. The statement below comes from the paper by del Junco and Lemańczyk [13,

Theorem 1].

Theorem 2.1 ([13]). Let ν(S) be the maximal spectral type of S ∈ Aut(γ). For a

generic transformation T in Aut(γ) and `1, . . . , `p, `
′
1, . . . , `

′
p′ ∈ N, if the sequences

(`1, . . . , `p) and (`′1, . . . , `
′
p′) are not rearrangements of each other, then

ν(T `1) ∗ · · · ∗ ν(T `p) ⊥ ν(T `
′
1) ∗ · · · ∗ ν(T `

′
p′ ).

The next theorem states two properties of the group 〈T 〉c for a generic T ∈
Aut(γ). A theorem implying point (i) was proved by Chacon and Schwartzbauer

in [4, Theorem 4.1]. Another proof of it can be found in [19, Theorem 1.6]. Point

(ii) follows from a result of Glasner and Weiss [11, Theorem 5.2] and is explicitly

proved in the paper by Melleray and Tsankov [19, Theorem 1.4]. Recall that a

topological group is extremely amenable if all its continuous actions on compact

spaces have fixed points.

Theorem 2.2. The following two statements hold for a generic T ∈ Aut(γ).

(i) ([4]) 〈T 〉c = {S ∈ Aut(γ) | TS = ST};
(ii) ([11], [19]) 〈T 〉c is extremely amenable.

The lemma below was proved in [22, Lemma 3]. It relates global largeness of a

set B in Aut(γ) to its local largeness in 〈T 〉c, for a generic T ∈ Aut(γ), which makes

it possible to turn properties of a generic T into properties of 〈T 〉c for a generic T .

The lemma may be seen as an analogue of the Kuratowski–Ulam theorem.

Lemma 2.3 ([22]). Let B ⊆ Aut(γ) be a set with the Baire property. Then B is

comeager in Aut(γ) if and only if, for a generic T ∈ Aut(γ), the set B ∩ 〈T 〉c is

comeager in 〈T 〉c.
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3. Notions and lemmas on unitary representations of L0(λ,T)

In this section, we build a framework, consisting of definitions and auxiliary lem-

mas, that is needed to carry out our arguments concerning unitary representations

of L0(λ,T). We proceed with care as some notions introduced here are new and

some notions and notation from the literature are revised. For example, the defi-

nition of N[Z×], the semigroup operation and the action of Z× on it are new. The

same goes for the notion of good permutation and good homeomorphism. Aside

from being the basis of the arguments in this paper, the new framework allows

us to streamline the statements of Theorems 4.1 and 4.2 proved in [21] and [7],

respectively. For example, the algebraic notions related to N[Z×] permit a more

concise formulation of Theorem 4.2, cf. [7, Theorem 4.4], while good homeomor-

phisms make it possible to remove an ad hoc linear order on 2N in the statement of

Theorem 4.1, cf. [21, Condition (A3) in Theorem 2.1].

We start by defining equivariant Hilbert space maps, Section 3.1. Then, we

define a semigroup N[Z×], Section 3.2. Next, we describe a family of compact

zero dimensional spaces Cx indexed by x ∈ N[Z×], Section 3.3. Each such space

comes with a natural notion of marginally compatible and compatible measures,

Section 3.4, and with a class of functions indexed by elements of L0, Section 3.5.

The measures and functions are then combined to define basic representations of

L0 that will be used later to build representations of interest, Section 3.6.

3.1. Equivariant Hilbert space maps. Throughout the paper, a central role

will be played by the following notions. Let H1 and H2 be Hilbert space with inner

products 〈·, ·〉1 and 〈·, ·〉2, respectively. A function p : H1 → H2 is called a Hilbert

space map if it is linear and, for all f, g ∈ H1, we have〈
p(f), p(g)

〉
2

= 〈f, g〉1.

Obviously, by the polarization identity, Hilbert space maps are simply linear isome-

tries, in particular, a Hilbert space map p : H1 → H2 is a linear embedding of H1 to

H2. Let ξ1, ξ2 be unitary representations of L0(λ,T) on H1 and H2, respectively.

We say that p is equivariant between ξ1 and ξ2 if, for each φ ∈ L0(λ,T) and

f ∈ H1, we have

(2) p
(
ξ1(φ)

(
f
))

= ξ2(φ)
(
p(f)

)
.

3.2. The semigroup N[Z×] and the action of Z× on it. We view

Z× = Z \ {0}

taken with multiplication as a semigroup. We will also need

Z2 = {−1, 1}

that is a subsemigroup of Z×. Let

N[Z×] = {x | x a function, dom(x) 6= ∅ finite, dom(x) ⊆ Z×, and rng(x) ⊆ N}.
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We equip N[Z×] with a binary operation ⊕ as follows. For x, y ∈ N[Z×], let x ⊕ y
be the element z of N[Z×] such that

dom(z) = dom(x) ∪ dom(y)

and, for k ∈ dom(z), we let

z(k) =


x(k) + y(k), if k ∈ dom(x) ∩ dom(y);

x(k), if k ∈ dom(x) \ dom(y);

y(k), if k ∈ dom(y) \ dom(x).

We note that Z× and N[Z×] are semigroups. There is a useful action of Z× on

N[Z×]. For x ∈ N[Z×] and ` ∈ Z×, let `x be the element z of N[Z×] such that

dom(z) = {`m | m ∈ dom(x)} and, for k ∈ dom(z),

z(k) = x(k/`).

Observe that, for `, `1, `2 ∈ Z× and x, y ∈ N[Z×], we have

`(x⊕ y) = `x⊕ `y and `2(`1x) = (`2`1)x.

3.3. The topological spaces Cx, for x ∈ N[Z×]. For x ∈ N[Z×], we write

D(x) = {(k, i) | k ∈ dom(x), 0 ≤ i < x(k)}.

Let

Cx = (2N)D(x).

Define πk,i : Cx → 2N, for (k, i) ∈ D(x), to be the projection from Cx onto

coordinate (k, i). By a diagonal of Cx we understand a set of the form

{α ∈ Cx | πk,i(α) = πk′,i′(α)},

for some distinct (k, i), (k′, i′) ∈ D(x). We write

C0
x

for the set obtained from Cx by removing the diagonals. For n ∈ N, by an n-basic

set for x we understand a set of the form

(3) JuK = {α ∈ Cx | πk,i(α) � n = u(k, i) for all (k, i) ∈ D(x)},

where u : D(x)→ 2n is an injection. One can relate the set above to the sets defined

in (1) as follows

(4) JuK =
∏

(k,i)∈D(x)

[u(k, i)].

We leave proving the following easy lemma to the reader.

Lemma 3.1. For each n0 ∈ N, the family of all n-basic sets for x with n ≥ n0

forms a topological basis for C0
x.
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We call n-basic sets simply basic for x if n is not relevant or clear from the context.

For x ∈ N[Z×], a permutation δ of D(x) is called good if, for each (k, i) ∈
D(x), δ(k, i) = (k, j) for some j. Note that each good permutation δ induces a

homeomorphism δ̃ of

Cx = (2N)D(x)

by permuting coordinates, that is, for α ∈ Cx, δ̃(α) ∈ Cx is determined by the

following formulas

(5) πδ(k,i)
(
δ̃(α)

)
= πk,i(α), for all (k, i) ∈ D(x).

We call such homeomorphisms δ̃ good homeomorphisms of Cx. Observe that

both good permutations of D(x) and good homeomorphisms of Cx form groups

under composition.

We make the following observation on the connection between basic sets and

good homeomorphisms that will be used in the proof of Lemma 3.11.

Lemma 3.2. Let U be a set that is n-basic for x. Then the sets δ̃(U) are pairwise

disjoint n-basic sets when δ varies over all good permutations of D(x).

Proof. Let U = JuK for an injection u : D(x) → 2n. If δ is a good permutation of

D(x), then, by (5), we have

δ̃
(
JuK
)

= Ju ◦ δ−1K,

and the conclusion follows. �

The space Cx⊕y can be naturally seen as Cx × Cy, in fact, in several ways. To

make these identifications precise, fix

(6) ῑ = (ιx, ιy),

where ιx : D(x) → D(x ⊕ y) and ιy : D(y) → D(x ⊕ y) are injections with disjoint

images and such that, for each (k, i) ∈ D(x), ιx(k, i) = (k, j) for some j, and,

similarly, for each (k, i) ∈ D(y), ιy(k, i) = (k, j) for some j. Note that D(x⊕ y) is

a disjoint union of ιx
(
D(x)

)
and ιy

(
D(y)

)
. Then, define

(7) hῑ : Cx × Cy → Cx⊕y, hῑ(α, β) = γ,

where γ is given as follows. To specify γ ∈ Cx⊕y, it suffices to specify πk,j(γ) for

(k, j) ∈ D(x⊕ y). For each such (k, j), there exists a unique (k, i) with

(k, j) = ιx(k, i) or (k, j) = ιy(k, i)

and not both. In the first case, we let

πk,j(γ) = πk,i(α),

while in the second

πk,j(γ) = πk,i(β).

We note that hῑ is a homeomorphism. The following lemma concerns interactions

of hῑ with basic sets. We leave its verification to the reader.
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Lemma 3.3. Let ῑ be as in (6). If u : D(x⊕ y)→ 2n is an injection, then

hῑ
(
Ju ◦ ιxK× Ju ◦ ιyK

)
= JuK.

For ` ∈ Z×, we define

(8) ex,` : Cx → C`x, ex,`(α) = γ,

where for (k, i) ∈ D(`x), we let γ(k, i) = α(k/`, i). We note that ex,` is a homeo-

morphism.

3.4. Marginally compatible and compatible measures on Cx. Let µ be a

finite Borel measure on Cx. We say that µ is marginally compatible with

x ∈ N[Z×] if the marginal measures (πk,i)∗(µ) of µ on 2N, for (k, i) ∈ D(x), are

absolutely continuous with respect to λ. We say that µ is compatible with

x ∈ N[Z×] if

(a) µ is marginally compatible with x;

(b) µ is invariant under good homeomorphisms of Cx;

(c) all diagonals of Cx have measure zero with respect to µ, that is, µ concen-

trates on C0
x.

The condition of marginal compatibility, that is, (a), is needed for representations

as in (12) to be well defined, while conditions (b) and (c) ensure uniqueness in

Theorem 4.1.

For each x ∈ N[Z×], let Mx be the set of measures on Cx compatible with x,

and let

M =
⋃

x∈N[Z×]

Mx.

For µ, ν ∈M, with µ compatible with x and ν compatible with y, we define

µ⊗ ν =
∑
ῑ

(hῑ)∗(µ× ν),

where hῑ are the homeomorphisms defined in (7) and ῑ ranges over pairs as in (6).

Lemma 3.4. Let µ and ν be measures compatible with x and y, respectively.

(i) For each ῑ as in (6), the measure (hῑ)∗(µ× ν) fulfills (a) and (c) from the

definition of compatibility with x⊕ y.

(ii) The measure µ⊗ ν is compatible with x⊕ y.

Proof. Point (ii) follows immediately from (i). In (i), checking (a) is straightforward

since, for (k, j) ∈ D(x⊕ y),

(πk,j)∗
(
(hῑ)∗(µ× ν)

)
= (πk,i)∗(µ) or (πk,j)∗

(
(hῑ)∗(µ× ν)

)
= (πk,i)∗(ν),

for an appropriate (k, i) ∈ D(x) or (k, i) ∈ D(y).

It remains to see (c). Let (k, j), (k′, j′) ∈ D(x⊕ y) be distinct, and consider the

diagonal

∆ = {γ ∈ Cx⊕y : πk,j(γ) = πk′,j′(γ)}.
We need to check that

(9) (µ× ν)
(
h−1
ῑ (∆)

)
= 0.
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Let ῑ = (ιx, ιy). Because of symmetry, we only need to consider two cases

ιx(k, i) = (k, j), ιx(k′, i′) = (k′, j′), for some (k, i), (k′, i′) ∈ D(x),

and

ιx(k, i) = (k, j), ιy(k′, i′) = (k′, j′), for some (k, i) ∈ D(x) and (k′, i′) ∈ D(y).

Note that in either case (k, i) and (k′, i′) are distinct from each other since (k, j)

and (k′, j′) are distinct. Now, in the first case, we have

h−1
ῑ (∆) = {α ∈ Cx | πk,i(α) = πk′,i′(α)} × Cy,

and (9) follows from µ being compatible with x, as this property implies

µ
(
{α ∈ Cx | πk,i(α) = πk′,i′(α)}

)
= 0.

In the second case, we have

h−1
ῑ (∆) = {(α, β) ∈ Cx × Cy | πk,i(α) = πk′,i′(β)}.

Fubini’s theorem implies that to prove (9) for the set above, it suffices to see that,

for each β0 ∈ 2N,

µ
(
{α ∈ Cx | πk,i(α) = β0}

)
= 0.

But otherwise, we would have(
(πk,i)∗(µ)

)(
{β0}

)
> 0,

contradicting absolute continuity of the marginal measure (πk,i)∗(µ) with respect

to λ in light of λ not having atoms. �

By inspecting the definitions, we see the following lemma.

Lemma 3.5. (i) M with the operation ⊗ is an abelian semigroup.

(ii) Let µ, µ′ ∈ M be compatible with x, and let ν, ν′ ∈ M be compatible with

y. If µ � µ′ and ν � ν′, then µ⊗ ν � µ′ ⊗ ν′.

Again Z× acts on M as follows. For µ ∈M compatible with x, let

`µ = (ex,`)∗(µ),

where ex,` is the homeomorphism given by (8). The following lemma is easy to

check.

Lemma 3.6. The measure `µ is compatible with `x.

The next lemma is also checked by a quick inspection.

Lemma 3.7. (i) For µ, ν ∈M and `, `1, `2 ∈ Z×, we have `(µ⊗ ν) = `µ⊗ `ν
and `2(`1µ) = (`2`1)µ.

(ii) Let µ, µ′ ∈M be compatible with x and let ` ∈ Z×. If µ � µ′, then `µ � `µ′.



10 S LAWOMIR SOLECKI

3.5. Certain functions on Cx. Let x ∈ N[Z×]. For φ ∈ L0(λ,T), define a function

Rx(φ) on Cx with values in T by the formula

(10) Rx(φ) =
∏

(k,i)∈D(x)

(φ ◦ πk,i)k.

Note that since φ is a measure class of functions with respect to λ, Rx(φ) is defined

only up to a set of the form ⋃
(k,i)∈D(x)

π−1
k,i (Ak,i),

where Ak,i is a subset of 2N with λ(Ak,i) = 0. In particular, for each measure µ

marginally compatible with x, Rx(φ) determines a measure class of functions with

respect to µ. Functions Rx(φ) will be crucial in defining unitary representations of

L0(λ,T) in Hilbert spaces L2(µ) for such µ.

We prove now three lemmas establishing some properties of the functions Rx(φ).

The first of these lemmas will be important in computations.

Lemma 3.8. Let u : D(x) → 2n be an injection, for x ∈ N[Z×] and n ∈ N. Fix

zs ∈ T, for s ∈ 2n, and consider

φ =
∑
s∈2n

zsχ[s] ∈ Sn,

where χ[s] is the indicator function of the set [s] ⊆ 2N. For this φ, the function

Rx(φ) is constant on JuK, and its constant value is∏
(k,i)∈D(x)

zku(k,i).

Proof. By (3), for α ∈ JuK, we have

φ(πk,i(α)) = zu(k,i),

and the conclusion follows. �

The next two lemmas describe interactions of the functions in (10) with homeo-

morphisms defined before.

Lemma 3.9. For each φ ∈ L0(λ,T), Rx(φ) is invariant under all good homeomor-

phisms of Cx.

Proof. Fix a good permutation δ of D(x) and α ∈ Cx. We show that∏
(k,i)∈D(x)

(φ ◦ πk,i)k
(
δ̃(α)

)
=

∏
(k,i)∈D(x)

(φ ◦ πk,i)k
(
α
)
.

It suffices to prove that, given k0 such that (k0, i) ∈ D(x) for some i, we have

(11)
∏

(k0,i)∈D(x)

(φ ◦ πk0,i)
k0
(
δ̃(α)

)
=

∏
(k0,i)∈D(x)

(φ ◦ πk0,i)
k0
(
α
)
.

Since the right-hand side of (11) is equal to( ∏
(k0,i)∈D(x)

φ ◦ πk0,i(α)
)k0
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while, by (5), the left-hand side of (11) is equal to( ∏
(k0,i)∈D(x)

φ ◦ πk0,i

(
δ̃(α)

))k0

=
( ∏

(k0,i)∈D(x)

φ ◦ πδ−1(k0,i)(α)
)k0

,

it suffices to notice that∏
(k0,i)∈D(x)

φ ◦ πδ−1(k0,i)(α) =
∏

(k0,i)∈D(x)

φ ◦ πk0,i(α),

which is clear as δ−1 is a good permutation of D(x). �

Lemma 3.10. Let x, y ∈ N[Z×] and let φ ∈ L0(λ,T).

(i) For ῑ as in (6) and α ∈ Cx, β ∈ Cy,(
Rx⊕y(φ) ◦ hῑ

)
(α, β) = Rx(φ)(α)Ry(φ)(β).

(ii) For ` ∈ Z×,

R`x(φ) ◦ ex,` = Rx(φ)`.

Proof. Point (ii) is clear. As for point (i), let ῑ = (ιx, ιy). Using the definitional

identities for hῑ,

πιx(k,i)(hῑ(α, β)) = πk,i(α) and πιy(k,i)(hῑ(α, β)) = πk,i(β),

for (k, i) ∈ D(x) and (k, i) ∈ D(y), respectively, we get( ∏
(k,i)∈D(x⊕y)

(φ ◦ πk,i)k
)
(hῑ(α, β))

=
( ∏

(k,i)∈D(x)

(φ ◦ πιx(k,i))
k
)
(hῑ(α, β))

( ∏
(k,i)∈D(y)

(φ ◦ πιy(k,i))
k
)
(hῑ(α, β))

=
( ∏

(k,i)∈D(x)

(φ ◦ πk,i)k
)
(α)

( ∏
(k,i)∈D(y)

(φ ◦ πk,i)k
)
(β),

as required. �

3.6. Basic representations of L0(λ,T). We define here certain unitary represen-

tations of L0(λ,T). All other representations of L0(λ,T) in this paper, except for

Koopman representations, are built from the ones defined in this section. A good

reason for this situation is given in Theorem 4.1.

Let x ∈ N[Z×].

Let µ be a measure on Cx that is marginally compatible with x. We define a

unitary representation ρx of L0(λ,T) on L2(µ) by letting ρx(φ), for φ ∈ L0(λ,T),

be the multiplication operator on L2(µ) given by

(12) ρx(φ)
(
f
)

= Rx(φ)f, for f ∈ L2(µ),

where on the right-hand side is the product of a function given by (10) and f . The

assumption on µ of being marginally compatible with x ensures that the function

on the right hand side is measurable with respect to µ. It is now easy to check that

ρx(φ) in (12) is a unitary operator on L2(µ) and that

(13) ρx : L0(λ,T)→ U
(
L2(µ)

)
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is a unitary representation of L0(µ,T).

Note that strictly speaking ρx depends also on µ. We do not reflect this fact

in our notation, that is, we use the same piece of notation ρx to denote unitary

representations on L2(µ) for all measures µ marginally compatible with x as it will

not cause confusion.

Let µ be a measure compatible with x. We define now a subrepresentation of ρx
on L2(µ). We let

(14) L̃2(µ)

be the closed subspace of L2(µ) consisting of all (equivalence classes of) functions

invariant under good homeomorphisms of Cx. Lemma 3.9 implies that, for each

φ ∈ L0(λ,T), the function ρx(φ)
(
f
)
, as defined by (12), is an element of L̃2(µ) if f

is. This means that L̃2(µ) is a subspace of L2(µ) invariant under the representation

ρx from (13). We denote the restriction of ρx to L̃2(µ) by the same latter, that is,

(15) ρx : L0(λ,T)→ U
(
L̃2(µ)

)
.

Two instances of the representation ρx that we will use most are the above

instance on the space L̃2(µ), for a measure µ compatible with x, and the instance

on the space L2(µ � U), where µ is a measure compatible with x and U is a basic

set for x. Here, by µ � U , we understand a Borel measure on Cx defined by(
µ � U

)
(A) = µ(A ∩ U),

for Borel subsets A of Cx. Note that here µ � U is marginally compatible with x.

The next lemma describes an embedding between these two representations.

Lemma 3.11. Let µ be a measure compatible with x, and let U be a basic set for

x. There exists a Hilbert space map

(16) L2(µ � U) 3 f → f̃ ∈ L̃2(µ)

that is equivariant between ρx in L2(µ � U) and ρx in L̃2(µ).

Proof. Fix f ∈ L2(µ � U). Now, f is an equivalence class of functions on Cx
measurable with respect to µ � U . Pick a representative F in the class f such that

(17) F � (Cx \ U) = 0.

Such an F can always be found. Define

(18) f̃ =
1

N

∑
δ

(
F ◦ δ̃−1

)
∈ L̃2(µ),

where the sum is taken over all good permutations of D(x) and N is the number

of good permutations of D(x). It is clear that f̃ ∈ L̃2(µ); in fact, (18) specifies

the same element of L̃2(µ) regardless of which representative F of f is chosen as

long as it fulfills (17). Thus, the map (16) is well defined. The conclusion that

(16) is a Hilbert space map follows from Lemma 3.2 and the invariance of µ under

good homeomorphisms of Cx. The equivariance of the map (16) is a consequence

of Lemma 3.9. �
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4. Known results on unitary representations of L0(λ,T)

Theorem 4.1 below gives a general form of a unitary representation of L0(λ,T).

It was proved in [21, Theorem 2.1]. The framework of the statement below differs

somewhat from that in [21]; for example, good homeomorphisms introduced in

this paper together with the definition of the space L̃2(µ) allow us to remove an

arbitrarily chosen linear order on 2N from the formulation of the theorem. However,

translating the statement from [21] into the one below is not difficult. One may

view Theorem 4.1 as a spectral theorem for unitary representations of L0(λ,T).

This theorem forms the basis of our proof of Theorem 1.1.

Recall the definitions (12), (14), and (15).

Theorem 4.1 ([21]). Let ξ : L0(λ,T) → U(H) be a unitary representation on a

separable Hilbert space H. Let H0 be the orthogonal complement of the subspace

of H consisting of vectors fixed by the representation. Then the representation

restricted to H0 is determined by a sequence of finite Borel measures (µjx)x∈N[Z×],j∈N
such that, for each j,

µjx is a measure on Cx compatible with x, and µj+1
x � µjx.

The representation restricted to H0 is isomorphic to the `2-sum over x ∈ N[Z×]

and j ∈ N of the representations

(19) L0(λ,T)× L̃2(µjx) 3 (φ, f)→ ρx(φ)
(
f
)
∈ L̃2(µjx).

Furthermore, the sequence (µjx)x∈N[Z×],j∈N is unique up to mutual absolute continu-

ity of its entries.

From this point on, given a unitary representation ξ : L0(λ,T) → U(H),

for a separable Hilbert space H, we write

µx = µ1
x, for x ∈ N[Z×].

We neglect to indicate the dependence of µx on ξ, as the representation will always

be clear from the context.

Theorem 4.2 below was proved by Etedadialiabadi in his PhD thesis and pub-

lished in [7, Theorem 4.4]. The framework of point (ii) of this theorem as stated

below, in particular, the algebraic notions associated with N[Z×], are new here and

somewhat different from the framework in [7]; passing between the two formulations

is not difficult. Given a unitary representation ξ of L0(λ,T), Theorem 4.2 translates

the condition asserting that, for a generic φ ∈ L0(λ,T), the maximal spectral type

of the operator ξ(φ) satisfies the property in Theorem 2.1 into a condition on the

sequence of measures associated with ξ by Theorem 4.1.

Theorem 4.2 ([7]). Let ξ : L0(λ,T) → U(H) be a unitary representation on a

separable Hilbert space H. For ψ ∈ L0(λ,T), let ν(ψ) be the maximal spectral type

of the unitary operator ξ(ψ). The following two conditions are equivalent.

(i) For a generic element φ of L0(λ,T) and `1, . . . , `p, `
′
1, . . . , `

′
p′ ∈ N, if the

sequences (`1, . . . , `p) and (`′1, . . . , `
′
p′) are not rearrangements of each other,
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then

ν(φ`1) ∗ · · · ∗ ν(φ`p) ⊥ ν(φ`
′
1) ∗ · · · ∗ ν(φ`

′
p′ ).

(ii) For `1, . . . , `p, `
′
1, . . . , `

′
p′ ∈ Z× and x1, . . . , xp, x

′
1, . . . , x

′
p′ ∈ N[Z×], if

`1x1 ⊕ · · · ⊕ `pxp = `′1x
′
1 ⊕ · · · ⊕ `′p′x′p′

and the sequences (`1, . . . , `p), (`′1, . . . , `
′
p′) are not rearrangements of each

other, then

`1µx1 ⊗ · · · ⊗ `pµxp ⊥ `′1µx′1 ⊗ · · · ⊗ `
′
p′µx′p′ .

5. The theorem on Koopman representations and an outline of its

proof

Theorem 5.1 below gives an additional non-trivial condition fulfilled by unitary

representations of L0(λ,T) that arise from boolean actions of this group as follows.

To state it, we need to recall some notions related to boolean actions that will also

be used later on in the paper.

Let G be a Polish group. A boolean action of G on (X, γ) is a continuous

homomorphism ζ : G→ Aut(γ). The word action is justified by viewing G as acting

via ζ on the boolean algebra of measure classes of measurable subsets of (X, γ) as

follows

gB = ζ(g)
(
B
)
.

We point out that, by [11, Proposition 1.3], a boolean action of a Polish group is

induced by a near-action, as defined below, and vice-versa each near-action induces

a boolean action. Recall from [11, Definition 1.2] that a near-action of G on (X, γ)

is a Borel map G×X → X, (g, ω)→ gω, with the following properties:

— 1ω = ω for almost every ω ∈ X with respect to γ;

— for g, h ∈ G, g(hω) = (gh)ω, for almost every ω ∈ X with respect to γ,

where the set of points ω for which this equality holds depends on g, h;

— the map X 3 ω → gω ∈ X is measure preserving with respect to γ, for

each g ∈ G.

It follows from the above discussion that expressions of the form gω, for g ∈ G and

ω ∈ X, make sense for a boolean action of G as they are understood in terms of a

near-action realizing the boolean action. Obviously, for two near-actions realizing

the same boolean action and for g ∈ G, the values gω coincide only on a set of

ω ∈ X that has measure 1 with respect to γ.

A boolean action of G on (X, γ) is called ergodic if, for each measure class B

of a measurable set in (X, γ) such that gB = B for each g ∈ G, we have γ(B) = 1

or γ(B) = 0.

Given a boolean action ζ : L0(λ,T)→ Aut(γ), the Koopman representation

associated with ζ is the unitary representation of L0(λ,T) on L2(γ) given by

L0(λ,T) 3 φ→ Uφ ∈ U
(
L2(γ)

)
,

where, for f ∈ L2(γ),

Uφ(f)(ω) = f(φ−1ω), for ω ∈ X.
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On the right-hand side of formula above, we use a near-action inducing ζ.

Theorem 5.1. Assume that a unitary representation of L0(λ,T) is the Koopman

representation associated with an ergodic boolean action of L0(λ,T). Then, for

`1, . . . , `p ∈ Z2 and x1, . . . , xp, x ∈ N[Z×] with

`1x1 ⊕ · · · ⊕ `pxp = x,

we have

`1µx1
⊗ · · · ⊗ `pµxp � µx.

Note that in the theorem above the coefficients `1, . . . , `p are restricted to come

from Z2 rather than from the whole Z×.

We outline the course of our argument proving Theorem 5.1. Let σ be the

Koopman representation induced by a boolean action of L0(λ,T) on (X, γ). Let

H0(γ) be the orthogonal complements of the space consisting of the elements of

L2(γ) that are fixed by σ. By ergodicity of the boolean action, H0(γ) consist of

elements of L2(γ) with zero integral. Let τ be the representation gotten for σ by

applying Theorem 4.1.. We denote the Hilbert space underlying τ by Hτ . Of course,

τ comes in the form of finite measures µjx, for j ∈ N and x ∈ N[Z×], and µx = µ1
x for

all x. Finally, let Φ: H0(γ)→ Hτ be the isomorphism of representations produced

in Theorem 4.1. Recall also the notion of equivariant Hilbert space map from

Section 3.1.

By the results of Section 3.4, to prove Theorem 5.1, it suffices to show only two

special cases of the conclusion, that is, for all x, y, z ∈ N[Z×],

µy ⊗ µz � µx, if y ⊕ z = x, and (−1)µx � µ(−1)x.

Below, we focus on the first case only; the second case is handled by analogous

methods. By the definition of µy ⊗ µz and since basic sets form a topological basis

of Cx, it is enough to show that

(20) (hῑ)∗(µy × µz) � U � µx,

for each basic for x set U and each ῑ as in (6). Fix such U and ῑ, and set

µU,ῑ = (hῑ)∗(µy × µz) � U.

Unpacking further, we see that showing inequality (20) boils down to showing that,

for each compact subset K of U with µU,ῑ
(
K
)
> 0, there is some j ∈ N with

µjx(K) > 0. This translates into proving the following implication for each compact

set K ⊆ U

(21) L2(µU,ῑ � K) 6= 0 =⇒ L2(µjx � K) 6= 0, for some j.

We view L2(µU,ῑ) as the underlying Hilbert space of the representation ρU,ῑ that

is equal to ρx, as in Section 3.6, on L2(µU,ῑ). To prove (21), it is now natural to

seek a direct connection between ρU,ῑ and τ . This connection comes in the form of

a Hilbert space map

Ψ: L2(µU,ῑ)→ H0(γ)
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that is equivariant between ρU,ῑ and σ, or rather in the form of its composition with

the isomorphism Φ yielding a Hilbert space map

(22) Φ ◦Ψ: L2(µU,ῑ)→ Hτ

that is equivariant between ρU,ῑ and τ . Such a Ψ is constructed in Section 12. The

work done in Sections 9, 10, and 11 forms a basis of our construction of Ψ. In this

work, the ergodic theorem for L0(λ,T) is used.

The connection given by the Hilbert space map (22) is exploited to get (21)

as follows. Given an arbitrary unitary representation ξ of L0(λ,T) on a Hilbert

space H, we associate with x ∈ N[Z×] and a compact set K ⊆ C0
x a subspace of

H, which we call [x,K]ξ. The definition of and the results on [x,K]ξ are given in

Section 8. It turns out that a Hilbert space map that is equivariant between two

unitary representations ξ1 and ξ2 of L0(λ,T) maps the space [x,K]ξ1 for the first

representation to a subspace of [x,K]ξ2 for the second representation. In particular,

since Hilbert space maps are embeddings, we have

(23) [x,K]ξ1 6= 0 =⇒ [x,K]ξ2 6= 0.

Next, we need information on the spaces [x,K]ξ for ξ = ρU,ῑ and ξ = τ . We

show that [x,K]ρU,ῑ contains L2(µU,ῑ � K), while [x,K]τ is contained in the `2-

sum of the spaces L2(µjx � K̃) over all j ∈ N, where K̃ is a symmetrization of

K using good homeomorphisms of Cx. From these inclusions, together with the

general implication (23) and the existence of the equivariant Hilbert space map (22),

implication (21) follows. This final argument is carried out in detail in Section 13.

6. The proof of Theorem 1.1 from Theorem 5.1

From this point on, we write L0 for L0(λ,T).

We start our proof with a lemma.

Lemma 6.1. Assume that there is a non-meager set of transformations T ∈ Aut(γ)

such that 〈T 〉c is included the image of a continuous homomorphism from L0(ν,T) to

Aut(γ) for some finite Borel measure ν, with ν possibly depending on T . Then there

exists an ergodic boolean action of L0 on (X, γ), whose Koopman representation is

such that

(24) µx ⊗ µx ⊥ µx⊕x, for all x ∈ N[Z×].

Proof. We state the relevant properties of the group 〈T 〉c for a generic T ∈ Aut(γ).

(a) The set

{S ∈ 〈T 〉c | S fulfills the condition in Theorem 2.1}

is comeager in 〈T 〉c.
(b) 〈T 〉c is the largest abelian subgroup of Aut(γ) containing T .

(c) There is no non-trivial continuous homomorphism from 〈T 〉c to T.

Point (a) follows from Theorem 2.1 and Lemma 2.3 as soon as we see that the set

defined by the condition in Theorem 2.1 has the Baire property in Aut(γ). But by

[13, Lemma 1.4] this set is actually Borel, in fact, a countable intersection of open
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subsets of Aut(γ). Point (b) is an immediate consequence of Theorem 2.2 (i). As

for point (c), a non-trivial continuous homomorphism from 〈T 〉c to T would induce

a continuous action of 〈T 〉c on T that does not have fixed points, contradicting

Theorem 2.2 (ii).

By the classical theorem of Halmos, see [15, Theorem 2.6], a generic T ∈ Aut(γ)

is ergodic. Therefore, our assumption allows us to find an ergodic T ∈ Aut(γ)

that fulfills (a–c) above and for which there exists a continuous homomorphism

ζ : L0(ν,T)→ Aut(γ), for some finite Borel measure ν, with

(25) 〈T 〉c ⊆ ζ
(
L0(ν,T)

)
.

We fix such a transformation T .

The inclusion (25) together with (b) gives

〈T 〉c = ζ
(
L0(ν,T)

)
.

As a consequence

ζ : L0(ν,T)→ 〈T 〉c
is a continuous surjective homomorphism between Polish groups, which makes it,

by [9, Theorem 2.3.3], an open map. Thus, 〈T 〉c is isomorphic as a topological

group to the quotient group

(26) 〈T 〉c ∼= L0(ν,T)/ker(ζ).

Represent ν as the sum ν1 +ν2, where ν1 is atomless and ν2 is purely atomic. Then

L0(ν,T) is isomorphic as a topological group to the product

(27) L0(ν,T) = L0(ν1,T)× L0(ν2,T).

With (27) in mind, note that if {1}×L0(ν2,T) is not included in ker(ζ), then there

is a non-trivial continuous homomorphism from L0(ν,T)/ker(ζ) to T, contradicting

(c) in view of (26). Thus,

{1} × L0(ν2,T) < ker(ζ).

It follows that ζ factors through a continuous surjective homomorphism

ζ ′ : L0(ν1,T)→ 〈T 〉c.

Since, by the ergodicity of T , the group 〈T 〉c is non-trivial, we have that ν1 is

non-zero, and, therefore, one can assume that ν1 = λ.

It follows from the considerations above that there exists a continuous surjective

homomorphism

ζ : L0 → 〈T 〉c ⊆ Aut(γ).

Ergodicity of the boolean action ζ is an immediate consequence of ergodicity of

T . Using openness of ζ, we see that the preimage under ζ of the set in point

(a) is comeager in L0. Therefore, condition (i) of Theorem 4.2 is fulfilled. It

follows from Theorem 4.2 that the Koopman representation associated with the

boolean action ζ fulfills condition (ii) of that theorem. Taking p = 2, p′ = 1,

`1 = `2 = `′1 = 1, x1 = x2 = x, and x′1 = x ⊕ x in condition (ii), we see that the

Koopman representation fulfills (24). �
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Proof of Theorem 1.1 from Theorem 5.1. Assume, towards a contradiction, that

for a non-meager set of T ∈ Aut(γ), T is in the image of a continuous homo-

morphism from L0(ν,T) to Aut(γ) for some finite Borel measure ν. Then, by

Lemma 6.1, there is a boolean action of L0, which is ergodic and whose Koopman

representation fulfills (24). On the other hand, by Theorem 5.1, for ergodic boolean

actions of L0, we have

(28) µx ⊗ µx � µx⊕x, for all x ∈ N[Z×].

Now (24) and (28) give µx = 0, for all x ∈ N[Z×]. Thus, the boolean action of L0

is trivial, making it not ergodic, a contradiction. �

7. Ergodic theorem for L0(λ,T)

Theorem 7.2 below plays an auxiliary, but important, role in the proof of Theo-

rem 5.1. It is an analogue for ergodic boolean actions of L0 of the ergodic theorem.

It concerns the sequences (29) defined below.

Boolean and near-actions are defined in Section 5; groups Sn and notation con-

cerning these groups are defined in Section 1.1.

For measurability considerations, we will need the following lemma. We will use

it a couple of times.

Lemma 7.1. Let H be a compact metric group equipped with the probability Haar

measure θ. Let ζ : H → Aut(γ) be a boolean action of H. Then a near action

H ×X → X inducing ζ is measure preserving between (H ×X, θ × γ) and (X, γ),

that is, for each measurable set A ⊆ X,

(θ × γ)
(
{(h, x) ∈ H ×X | hx ∈ A})

)
= γ(A).

Proof. By Fubini’s theorem, we have

(θ × γ)
(
{(h, x) ∈ H ×X | hx ∈ A})

)
=

∫
H

γ(h−1A) dθ(h) =

∫
H

γ(A) dθ = γ(A),

and the lemma follows. �

Assume we have a boolean action of L0 on (X, γ). Fix n ∈ N. By Lemma 7.1,

applied to H = Sn, and Fubini’s theorem, for each f ∈ L1(γ), the function

Sn 3 t→ f(tω)

is in L1(θ) for almost all ω ∈ X with respect to γ. This observation allows us to

define, for almost all ω ∈ X with respect to γ,

(29) (Anf)(ω) =

∫
Sn
f(tω) dθ(t).

Furthermore, Anf is in L1(γ).

We can now state the ergodic theorem for L0. Our original proof of it (with

f ∈ L2(γ) and the convergence in the conclusion being in L2(γ), which is sufficient

for our applications) used the main result from [21] restated above as Theorem 4.1.

The proof below was pointed out to us by Glasner and Weiss, and we reproduce it

here with their permission.
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Theorem 7.2. Let an ergodic boolean action of L0 on (X, γ) be given. For f ∈
L1(γ), the sequence (Anf)n converges pointwise almost everywhere with respect to

γ to the function constantly equal to
∫
X
f dγ.

Proof. For n ∈ N, define F−n to consist of all γ-measurable subsets A of X such

that γ(tA \ A) = 0 for all t ∈ Sn. It is clear that F−n is a σ-algebra and that

F−n ⊇ F−(n+1). Set F−∞ =
⋂
n F−n. By the backwards martingale theorem [6,

Theorem 4.7.3], we have

(30) E
(
f |F−n

)
→ E

(
f |F−∞

)
as n→∞,

where the convergence is taken to be pointwise γ-almost everywhere.

By the ergodicity of the boolean action and the density of
⋃
n Sn in L0, the

σ-algebra F−∞ consists of sets of γ-measure 0 and of full γ-measure; thus,

E
(
f |F−∞

)
=

∫
X

f dγ.

From the invariance under translations by elements of Sn of the Haar measure θ,

Anf is invariant under the boolean action of Sn, so it is measurable with respect to

F−n. This observation, invariance of γ under the boolean action of Sn, and Fubini’s

theorem imply that

E
(
f |F−n

)
= Anf.

The conclusion follows from (30). �

8. A subspace for a unitary representation of L0(λ,T)

We start working towards the proof of Theorem 5.1. The notion of equivariant

Hilbert space map can be found in Section 3.1.

Fix x ∈ N[Z×] and a compact set K ⊆ C0
x; they will remain fixed for the rest of

this section.

Let ξ be a unitary representation of L0 on a Hilbert space H. We describe here

a subspace [x,K]ξ of H associated with the point x ∈ N[Z×] and the compact set

K ⊆ C0
x. In following the definition of this space, it may be useful to keep in

mind Lemma 3.8. An analysis of spaces of this form will be crucial in our proof of

Theorem 5.1. Define the subset

(31) [x,K]ξ

of H as follows. A number n ∈ N will be called admissible if

K ⊆
⋃
u

JuK,

where u varies over the set of all injections u : D(x)→ 2n. For an admissible n, put

Pn(K) = {u | u : D(x)→ 2n an injection and K ∩ JuK 6= ∅}.

Note that Pn(K) is finite. Using compactness of K ⊆ C0
x, we see that all large

enough n ∈ N are admissible. With a sequence (zs : s ∈ 2n), with zs ∈ T for
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all s ∈ 2n, we associate the element
∑
s∈2n zsχ[s] of L0, which gives the unitary

operator

(32) ξ(
∑
s∈2n

zsχ[s]).

Define [x,K]ξ to be the set of all h ∈ H with the following property. For every

admissible n ∈ N, h can be represented as

(33) h =
∑

u∈Pn(K)

hu,

where, for every u ∈ Pn(K) and (zs : s ∈ 2n), hu belongs to the eigenspace associ-

ated with the eigenvalue

(34)
∏

(k,i)∈D(x)

zku(k,i)

of the operator (32). Since eigenspaces are linear spaces, it follows easily that

[x,K]ξ is a linear subspace of H, but we will not use this fact.

The following simple, but useful, lemma makes explicit a degree invariance of

the space defined above.

Lemma 8.1. Let ξ1 and ξ2 be unitary representations of L0 on Hilbert spaces H1

and H2, respectively. Let Γ: H1 → H2 be a Hilbert space map that is equivariant

between ξ1 and ξ2. Then

Γ
(
[x,K]ξ1

)
⊆ [x,K]ξ2 .

Proof. It suffices to notice two points. First, Γ is linear being a Hilbert space

map. Second, if h ∈ H1 is in the eigenspace associated with eigenvalue c ∈ T of

the operator ξ1(φ), for some φ ∈ L0, then, by equivariance and linearity of Γ, the

vector Γ(h) ∈ H2 is in the eigenspace associated with c of the operator ξ2(φ). �

The next two lemmas give estimates on the size of the space [x,K]ξ. In both

lemmas, one can actually prove equalities in place of the indicated inclusions but,

in the sequel, we will only need the inclusions.

For a set A ⊆ Cx, let

(35) Ã =
⋃
δ

δ̃(A),

where δ ranges over all good permutations of D(x), and so δ̃ ranges over all good

homeomorphisms of Cx; see Section 3.3 for the definitions of good permutations

and good homeomorphisms.

Lemma 8.2. Let ξ be a unitary representation of L0. Let µjx, for j ∈ N and

x ∈ N[Z×], be measures found for ξ by Theorem 4.1.

Fix x ∈ N[Z×] and a compact set K ⊆ C0
x. The space [x,K]ξ is a subspace of

the `2-sum over j ∈ N of the spaces L̃2(µjx � K̃).

Proof. This proof is a modification of the argument in [21, p. 3118]. We start with

an elementary claim, whose justification we leave to the reader.
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Claim 1. Let a, b, c be finite sets with a, b ⊆ c, and let (lν)ν∈a and (mν)ν∈b be

sequences of elements of N. Assume that, for each sequence (zν)ν∈c of elements of

T, we have ∏
ν∈a

zlνν =
∏
ν∈b

zmνν .

Then, a = b and (lν)ν∈a = (mν)ν∈b.

Assume towards a contradiction that the inclusion in the conclusion of the lemma

does not hold. By Theorem 4.1, this means that there is an element h of [x,K]ξ

such that one of the following two possibilities occurs:

(a) for some x′ 6= x and some j, the orthogonal projection of h on L̃2(µjx′) is

non-zero;

(b) for some j, the orthogonal projection of h on L̃2(µjx) has support not in-

cluded in K̃.

Fix such an element h, and let A be the support of the projection of h as in

(a) or (b) above. So A is a non-zero µjx′ -measure class of a Borel subset of C0
x′ in

case (a), and it is a non-zero µjx-measure class of a Borel subset of C0
x in case (b).

We view A as a Borel set keeping in mind that it is determined by h only up to a

measure zero set. With this convention, we make the following claim that combines

(a) and (b).

Claim 2. There are x′, j, n, and an injection v : D(x′)→ 2n such that n is admis-

sible for K,

(36) µjx′
(
A ∩ JvK

)
> 0,

and either x′ 6= x or (x′ = x and v ◦ δ 6= u for all u ∈ Pn(K) and all good

permutations δ of D(x)).

Proof of Claim 2. As already remarked, large enough n are admissible for K by

compactness of K and the inclusion K ⊆ C0
x.

If (a) holds, we pick x′ and j as in (a). Since by Lemma 3.1 sets of the form JvK,
for injections v : D(x′) → 2n, for large enough n, form a topological basis for C0

x′ ,

we can find such an injection v with (36) for each large enough n.

If (b) holds, let x′ = x. Then, using compactness of K and Lemma 3.1 again, for

each large enough n, we can find an injection v : D(x′) → 2n such that (36) holds

and we have JvK∩ K̃ = ∅. This disjointness condition translates to Jv ◦ δK∩K = ∅,
for each good permutations δ of D(x), which gives v ◦ δ 6∈ Pn(K), for each good

permutations δ of D(x), and the claim follows.

Fix x′, j, n, and v as in Claim 2. Now, since n is admissible forK, h is represented

as a sum as in (33) for this n. By (36), there exists an hu, for some u ∈ Pn(K),

whose orthogonal projection on L2(µjx′) has support intersecting JvK on a set of

positive measure with respect to µjx′ . Fix such u. Since hu is non-zero, it is an

eigenvector of the operator in (32) for each sequence (zs : s ∈ 2n). Its eigenvalue

for a given (zs : s ∈ 2n) must be equal to

(37)
∏

(k,i)∈D(x′)

zkv(k,i)
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since, by Lemma 3.8, every value of each function from L̃2(µjx′) attained on JvK is

multiplied by that number when the function is acted on by the operator in (32).

On the other hand, this eigenvalue is also equal to (34) for the u found above. Thus,

(34) and (37) are equal to each other for each choice of (zs : s ∈ 2n). Using Claim 1

(with a = u
(
D(x)

)
, b = v

(
D(x′)

)
, c = 2n, lu(k,i) = k, and mv(k,i) = k), we see that

x′ = x and v ◦ δ = u, for some good permutation δ, which is a contradiction. �

The inclusion L2(µ) ⊆ [x,K]ξ from Lemma 8.3 below will be used as a lower

estimate on the space [x,K]ξ for a representation ξ of one of the two types defined

in Section 3.6.

Lemma 8.3. Fix x ∈ N[Z×] and a compact set K ⊆ C0
x. Let µ be a measure

marginally compatible with x that is concentrated on K. Let ξ be the representation

equal to ρx on L2(µ). Then

L2(µ) = [x,K]ξ.

Proof. Note that the inclusion L2(µ) ⊇ [x,K]ξ is obvious, so it remains to show

the opposite inclusion. To this end, let h ∈ L2(µ). Fix n that is admissible for K,

and set

hu = h � JuK,

for u ∈ Pn(K). Since µ concentrates on K and

K ⊆
⋃

u∈Pn(K)

JuK,

we see that in L2(µ)

(38) h =
∑

u∈Pn(K)

hu.

Now, take a sequence (zs : s ∈ 2n), with zs ∈ T, for all s ∈ 2n, and consider the

element t of L0 associated with that sequence as follows

t =
∑
s∈2n

zsχ[s] ∈ L0.

Note that, by the definitions of ξ and hu and by Lemma 3.8, we get

ξ(t)
(
hu
)

=
( ∏

(k,i)∈D(x)

zku(k,i)

)
hu.

This equation shows that hu belongs to the appropriate eigenspace, and the lemma

follows by (38). �

9. A lemma on independence of random variables

We assume we are given an ergodic boolean action of L0 on a Borel probability

space (X, γ). We fix notation for two unitary representations of L0 associated with

the boolean action.
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Representation σ. This is the Koopman representation on L2(γ) induced by

the boolean action of L0, that is, for φ ∈ L0, σ(φ) is the unitary operator on L2(γ),

whose value on f ∈ L2(γ) is given by(
σ(φ)(f)

)
(ω) = f(φ−1ω), for ω ∈ X.

Let

H0(γ) = {f ∈ L2(γ) |
∫
X

f dγ = 0}.

Then H0(γ) is a closed subspace of L2(γ) that is invariant under σ. Note that by

ergodicity of the boolean action of L0 on the space (X, γ), we have

(39) H0(γ) =
(
{f ∈ L2(γ) | σ(φ)(f) = f for all φ ∈ L0}

)⊥
.

Representation τ . This is the representation obtained by applying Theo-

rem 4.1 to the representation σ above. So τ is determined by a sequence of finite

Borel measures (µjx)x∈N [Z×],j∈N such that, for each x and j,

µjx is compatible with x, and µj+1
x � µjx.

The underlying Hilbert space of τ is the `2-sum of the Hilbert spaces L̃2(µjx), with

the sum taken over x ∈ N[Z×] and j ∈ N. We denote this Hilbert space by Hτ .

The representation τ on Hτ is then given by formulas (19).

By Theorem 4.1 and (39), there is a Hilbert space isomorphism

(40) Φ: H0(γ)→ Hτ

that is equivariant between σ and τ . For f ∈ Hτ , we let

(41) f̂ = Φ−1(f).

The proof of Lemma 9.1 below uses the ergodic theorem for boolean actions

of L0, Theorem 7.2. We will need the following notion. Let M be a set of com-

plex valued functions defined on the same set. By the ∗-algebra generated by

M we understand the set of all functions obtained by closing M under addition,

multiplication, conjugation, and multiplication by complex scalars. Additionally,

we adopt the following convention. We write f̂ for
ˆ̃
f , for f ∈ L2(µy � JvK) with

y ∈ N[Z×] and v : D(y)→ 2n, where f̃ is as in Lemma 3.11 for U = JvK. Note that

f̂ ∈ H0(γ) ⊆ L2(γ).

Lemma 9.1. Let y1, . . . , yk ∈ N[Z×]. For 1 ≤ i ≤ k, let vi : D(yi) → 2n be an

injection and let Fi be a function in the ∗-algebra generated by the set

{f̂ | f ∈ L2(µyi � JviK)}.

If, for all 1 ≤ i < j ≤ k, the images of vi and vj are disjoint, then F1, . . . , Fk are

independent random variables on (X, γ).

Proof. To keep our notation light, we present the proof for k = 2, and we set

F = F1, G = F2, v = v1, and w = v2.

Let A,B ⊆ C be Borel sets. Our aim is to show that

γ
(
F−1(A) ∩G−1(B)

)
= γ

(
F−1(A)

)
γ
(
G−1(B)

)
.
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If we let χ1, χ2, and χ12 be the indicator functions of the sets

F−1(A), G−1(B), and F−1(A) ∩G−1(B),

respectively, then we need to prove

(42)

∫
X

χ12 dγ =

∫
X

χ1 dγ

∫
X

χ2 dγ.

Let p ≥ n, where n is as in the statement of the lemma. We associate with v

and w sets of finite sequences in 2p as follows

(v, p) = {s ∈ 2p | v(k, i) = s � n, for some (k, i) ∈ D(y)}
(w, p) = {s ∈ 2p | w(k, i) = s � n, for some (k, i) ∈ D(z)}.

Recall that Sp = T2p . Define the following closed subgroups of Sp
Sv,p = {t ∈ Sp | t(s) = 1 for all s ∈ (v, p)},
Sw,p = {t ∈ Sp | t(s) = 1 for all s ∈ (w, p)},

S⊥v,p = {t ∈ Sp | t(s) = 1 for all s ∈ 2p \ (v, p)},

S⊥w,p = {t ∈ Sp | t(s) = 1 for all s ∈ 2p \ (w, p)}.

While, as usual, θ is the probability Haar measure on Sp, additionally, we let

θv, θw, θ
⊥
v , θ

⊥
w

be the probability Haar measures on Sv,p, Sw,p, S
⊥
v,p, S

⊥
w,p, respectively.

We record an identity, contained in (44), that is at the root of the proof of

independence of F and G. Let A′ ⊆ S⊥v,p and B′ ⊆ S⊥w,p be Borel sets. First, we

view Sp, both as a topological group and as a measure space equipped with θ, as

products

Sp = S⊥v,p × Sv,p and Sp = S⊥w,p × Sw,p,

with the groups on the right hand sides equipped with the measures θ⊥v × θv and

θ⊥w × θw, respectively. Thus, we have

(43) θ
(
A′ · Sv,p

)
= θ⊥v (A′) and θ

(
B′ · Sw,p

)
= θ⊥w (B′).

Further, since the images of the injections v and w are disjoint, we have

(v, p) ∩ (w, p) = ∅,

which allows us to view Sp also as the product

Sp = S⊥v,p × S⊥w,p × (Sv,p ∩ Sw,p).

Therefore, we get

(A′ · Sv,p) ∩ (B′ · Sw,p) = A′ ·B′ · (Sv,p ∩ Sw,p) and

θ
(
A′ ·B′ · (Sv,p ∩ Sw,p)

)
= θ⊥v (A′) θ⊥w (B′).

Putting the two above equalities and (43) together, we have

(44) θ
(
(A′ · Sv,p) ∩ (B′ · Sw,p)

)
= θ
(
A′ · Sv,p

)
θ
(
B′ · Sw,p

)
.
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Fix f ∈ L2(µy � JvK). By formula (19) that defines representation τ and by

Lemma 3.8, we see that

(45) τ(t)
(
f
)

= f, for all t ∈ Sv,p.

Since Φ is equivariant between σ and τ , by formula (41), equation (45) implies

σ(t)
(
f̂
)

= f̂ , for all t ∈ Sv,p.

The above equation, the definition of σ, and the fact that Sv,p is a group, imply

that, for each t ∈ Sv,p,

f̂(tω) = f̂(ω), for γ-almost every ω ∈ X.

Applying Lemma 7.1 with H = Sp to the above condition, we get that, for each

t ∈ Sv,p,

f̂(tt′ω) = f̂(t′ω), for (γ × θ)-almost every (t′, ω) ∈ Sp ×X.

After applying Fubini’s theorem, the condition above gives that, for γ-almost every

ω ∈ X, for θ-almost every t′ ∈ Sp, we have

(46) f̂(tt′ω) = f̂(t′ω), for θv-almost every t ∈ Sv,p.

We proved that condition (46) holds for arbitrary f ∈ L2
(
µy � JvK

)
. Since this

condition persists under taking sums and products, conjugation, and multiplication

by scalars of functions in {f̂ | f ∈ L2
(
µy � JvK

)
}, we see that the following condition

holds, for γ-almost every ω ∈ X:

for θ-almost every t′ ∈ Sp,

F (tt′ω) = F (t′ω), for θv-almost every t ∈ Sv,p.
(47)

By the same argument, we get that for γ-almost every ω ∈ X, we have

for θ-almost every t′ ∈ Sp,

G(tt′ω) = G(t′ω), for θw-almost every t ∈ Sw,p.
(48)

Fix ω ∈ X for which both (47) and (48) hold. The set of such points ω ∈ X has

γ-measure 1. Consider the functions Fp,ω, Gp,ω : Sp → C given by

Fp,ω(t′) = F (t′ω) and Gp,ω(t′) = G(t′ω).

With these definitions, condition (47) translates to

for θ-almost every t′ ∈ Sp,

Fp,ω(tt′) = Fp,ω(t′), for θv-almost every t ∈ Sv,p,

We view θ as the product θ⊥v × θv and apply Fubini’s theorem to the statement

above and obtain the following conclusion

for θ⊥v -almost every t′ ∈ S⊥v,p,
Sv,p 3 t→ Fp,ω(tt′) is constant θv-almost everywhere.

By the above observation, there exists a Borel set A′ ⊆ S⊥v,p such that

(49) F−1
p,ω(A) = A′ · Sv,p modulo a θ-measure 0 subset of Sp.



26 S LAWOMIR SOLECKI

By the same argument, except that using (48) in place of (47), there exists a Borel

set B′ ⊆ S⊥w,p such that

(50) G−1
p,ω(B) = B′ · Sw,p modulo a θ-measure 0 subset of Sp.

By (49) and (50), using (44), we get

(51) θ
(
F−1
p,ω(A) ∩G−1

p,ω(B)
)

= θ
(
F−1
p,ω(A)

)
θ
(
G−1
p,ω(B)

)
.

Let now χ1
p,ω, χ2

p,ω, and χ12
p,ω be the indicator functions of the following subsets

of Sp
F−1
p,ω(A), G−1

p,ω(B), and F−1
p,ω(A) ∩G−1

p,ω(B),

respectively. Equation (51) gives

(52)

∫
Sp
χ12
p,ω(t) dθ(t) =

∫
Sp
χ1
p,ω(t) dθ(t)

∫
Sp
χ2
p,ω(t) dθ(t).

We keep in mind that identity (52) was proved for all p ≥ n and for γ-almost all

ω ∈ X. Let Ap, for p ∈ N, be the operator defined by (29). We observe that, for

all p and ω ∈ X, ∫
Sp
χ1
p,ω(t) dθ(t) =

∫
Sp
χ1(tω) dθ(t) = Ap(χ

1)(ω)

and, similarly,∫
Sp
χ2
p,ω(t) dθ(t) = Ap(χ

2)(ω) and

∫
Sp
χ12
p,ω(t) dθ(t) = Ap(χ

12)(ω).

From the above and from (52), we get that, for all p ≥ n and for γ-almost all points

ω ∈ X,

(53) Ap(χ
12)(ω) = Ap(χ

1)(ω)Ap(χ
2)(ω).

By Theorem 7.2, for γ-almost all ω ∈ X, we have

Ap(χ
12)(ω)→

∫
X

χ12 dγ, Ap(χ
1)(ω)→

∫
X

χ1 dγ, and Ap(χ
2)(ω)→

∫
X

χ2 dγ,

as p→∞. From the above and from (53), we get (42) as required. �

10. A lemma on sesquilinear Hilbert space maps

Let F1, . . . , Fk, F ′1, . . . , F
′
l , and H be vector spaces over C. Following [3], we call

a function

(54) p :

k∏
i=1

Fi ×
l∏
i=1

F ′i → H

a sesquilinear map if it is linear in each of the coordinates F1, . . . , Fk and semi-

linear in each of the coordinates F ′1, . . . , F
′
l . A more precise name for such maps

would be multi-sesquilinear, but we use the shorter name. Also the split into the

linear and semilinear coordinates should be reflected in the name, but in all cases

below the split will be evident from the notation and context.

The following definitions generalize the notion of equivariant Hilbert space map.

Assume now that the spaces F1, . . . , Fk, F ′1, . . . , F
′
l , and H are Hilbert spaces with
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inner products 〈·, ·〉1, . . . , 〈·, ·〉k, 〈·, ·〉′1, . . . , 〈·, ·〉′l, and 〈·, ·〉, respectively. A function

p as in (54) is called a sesquilinear Hilbert space map if it is sesquilinear and,

for all f1, g1 ∈ F1, . . . , fk, gk ∈ Fk and f ′1, g
′
1 ∈ F ′1, . . . , f ′l , g′l ∈ F ′l , we have

〈
p(f1, . . . , f

′
l ), p(g1, . . . , g

′
l)
〉

=

k∏
i=1

〈fi, gi〉i
l∏
i=1

〈f ′i , g′i〉i.

Let ρ1, . . . , ρk, ρ′1, . . . , ρ
′
l, and ξ be unitary representations of L0 on the Hilbert

spaces F1, . . . , Fk, F ′1, . . . , F
′
l , and H, respectively. We say that p is equivariant

between
(
(ρi)

k
i=1, (ρ

′
i)
l
i=1

)
and ξ if, for each φ ∈ L0 and f1 ∈ F1, . . . , fk ∈ Fk and

f ′1 ∈ F ′1, . . . , f ′l ∈ F ′l , we have

(55) p
(
ρ1(φ)

(
f1

)
, . . . , ρ′l(φ)

(
f ′l
))

= ξ(φ)
(
p(f1, . . . , f

′
l )
)
.

One could hope not to have to distinguish two types of coordinates,
∏k
i=1 Fi

and
∏l
i=1 F

′
i , by precomposing a sesquilinear map p as above with the canonical

semilinear bar maps from the complex conjugates of F ′1, . . . , F
′
l to F ′1, . . . , F

′
l ; see [3,

Section 3.3]. After such a move, p would become a multilinear map with one type of

coordinates; however, after proceeding in this way, the equivariance condition (55)

would change in the coordinates F ′1, . . . , F
′
l and not in the coordinates F1, . . . , Fk

keeping the two sets of coordinates distinct.

As in Section 9, we assume we are given a boolean action of L0 on the Borel

probability space (X, γ). Also, as in Section 9, we consider the two unitary represen-

tations of L0 associated with the boolean action: the Koopman representation σ on

H0(γ) and the representation τ on Hτ , where Hτ is the `2-sum of the Hilbert spaces

L̃2(µjx), with the sum taken over x ∈ N[Z×] and j ∈ N. The two representations

are isomorphic by the map

Hτ 3 f → f̂ ∈ H0(γ)

as in (41).

We can now state the result of this section giving a sesquilinear Hilbert space

map. The lemma below will be used in two special cases, k = 2, l = 0 and k =

0, l = 1, but there is little harm in combining both cases into one statement.

Lemma 10.1. For 1 ≤ i ≤ k and 1 ≤ j ≤ l, let yi, zj ∈ N[Z×] and let vi : D(yi)→
2n and wj : D(zj) → 2n be injections. Assume that the images of vi and vj are

disjoint, for distinct i, j, as are the images of wi, wj, for distinct i, j, and the

images of vi and wj for all i, j. Then there exits a sesquilinear Hilbert space map

p :

k∏
i=1

L2(µyi � JviK)×
l∏
i=1

L2(µzi � JwiK)→ H0(γ)

that is equivariant between
(
(ρyi)

k
i=1, (ρzi)

l
i=1

)
on the product

∏k
i=1 L

2(µyi � JviK)×∏l
i=1 L

2(µzi � JwiK) and σ on H0(γ).

Proof. Again, we write out the proof only for k = l = 1. We set y = y1, z = z1,

v = v1, and w = w1.
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For f ∈ L2(µy � JvK), we write f̂ for
ˆ̃
f , and similarly for g ∈ L2(µz � JwK), we

write ĝ for ˆ̃g, where f̃ and g̃ are as in Lemma 3.11 for U = JvK and U = JwK,
respectively.

Note that since v and w have disjoint images, it follows from Lemma 9.1 that,

for f ∈ L2(µy � JvK) and g ∈ L2(µz � JwK), the functions f̂ ∈ H0(γ) and ĝ ∈ H0(γ)

are independent random variables on (X, γ). Therefore, we have

f̂ ĝ ∈ L2(γ);

in fact,

‖f̂ ĝ‖2 =

∫
X

|f̂ |2|ĝ|2 dγ =

∫
X

|f̂ |2 dγ
∫
X

|ĝ|2 dγ = ‖f̂‖2‖ĝ‖2.

Furthermore, ∫
X

f̂ ĝ dγ =

∫
X

f̂ dγ

∫
X

ĝ dγ = 0,

so

(56) f̂ ĝ ∈ H0(γ).

In view of (56), we consider the map

p : L2(µy � JvK)× L2
(
µz � JwK

)
→ H0(γ).

given by

p(f, g) = f̂ ĝ.

The map p is linear in the first coordinate and semilinear in the second one since

the maps

(57) L2(µy � JvK) 3 f → f̂ ∈ H0(γ) and L2
(
µz � JwK

)
3 g → ĝ ∈ H0(γ)

are linear. Further, we claim that〈
p(f1, g1), p(f2, g2)

〉
=
〈
f1, f2

〉 〈
g1, g2

〉
,

for all f1, f2 ∈ L2(µy � JvK) and g1, g2 ∈ L2
(
µz � JwK

)
. To check the above identity,

we compute〈
p(f1, g1), p(f2, g2)

〉
=

∫
X

f̂1ĝ1 f̂2ĝ2 dγ =

∫
X

f̂1f̂2 ĝ1ĝ2 dγ

=

∫
X

f̂1f̂2 dγ

∫
X

ĝ1ĝ2 dγ =
〈
f1, f2

〉 〈
g1, g2

〉
,

where the finiteness of the first integral follows from (56). The fourth equality

holds since the maps (57) are Hilbert space maps. To justify the third equality,

note that the functions f̂1f̂2 and ĝ1ĝ2 are in L1(γ) and they are independent random

variables on (X, γ) by Lemma 9.1 since v and w have disjoint images. Since the

second equality is obvious, we proved that p is a sesquilinear Hilbert space map.

To check equivariance, note that since σ is a Koopman representation, we have

σ(φ)
(
f̂ ĝ
)

= σ(φ)
(
f̂
)
σ(φ)

(
ĝ
)
,

for all φ ∈ L0 and f ∈ L2(µy � JvK), and g ∈ L2
(
µz � JwK

)
. Thus,

σ(φ)
(
p(f, g)

)
= σ(φ)

(
f̂
)
σ(φ)

(
ĝ
)

= ̂ρy(φ)
(
f
) ̂ρz(φ)

(
g
)

= p
(
ρy(φ)

(
f
)
, ρz(φ)

(
g
))
,
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where the second equality holds by the equivariance of the maps in (57). The

equivariance of p follows from the above equation. �

11. A lemma on tensor products

We will need the general Lemma 11.1 below that identifies the tensor product

of L2(µ1), . . . , L2(µk) and L2(ν1), . . . , L2(νl) as L2(
∏k
i=1 µi ×

∏l
I=1 νi), for finite

Borel measures µ1, . . . , µk and ν1, . . . , νl, in a category we are interested in. It is a

consequence of the standard development of the tensor product of Hilbert spaces

as in [12, Appendix E]. The two special cases of it that will be used are k = 2, l = 0

and k = 0, l = 1.

Define the canonical map

(58) q :

k∏
i=1

L2(µi)×
l∏
i=1

L2(νi)→ L2
( k∏
i=1

µi ×
l∏
i=1

νi
)
,

by letting, for fi ∈ L2(µi), for 1 ≤ i ≤ k, and gi ∈ L2(νi), for 1 ≤ i ≤ l,

q
(
f1, . . . , gl

)
(α1, . . . , βl) =

k∏
i=1

fi(αi)

l∏
i=1

gi(βi).

Then it is routine to check that q is a sesquilinear Hilbert space map.

Lemma 11.1. Let µi, for 1 ≤ i ≤ k, and νi, for 1 ≤ i ≤ l, be finite Borel measures.

Let H be a Hilbert space whose inner product is 〈·, ·〉H . Then, for each sesquilinear

Hilbert space map,

p :

k∏
i=1

L2(µi)×
l∏
i=1

L2(νi)→ H,

there exists a Hilbert space map

r : L2
( k∏
i=1

µi ×
l∏
i=1

νi
)
→ H

with

p = r ◦ q.

Proof. We write out the proof for k = l = 1 only. We set µ = µ1 and ν = ν1. We

denote the inner products in the spaces L2(µ), L2(ν), L2(µ× ν) by

〈·, ·〉µ, 〈·, ·〉ν , 〈·, ·〉µ×ν ,

respectively.

We precompose p and q with the bijection

(59) L2(µ)× L2(ν) 3 (f, g)→ (f, g) ∈ L2(µ)× L2(ν),

which is linear in the fist coordinate and semilinear in the second one. As a result

we obtain bilinear maps p′ and q′. Let L be the linear span in L2(µ×ν) of the image

of q′. We note that L is a dense subspace of L2(µ× ν). By [12, Definitions E1, E7

and Examples E6, E10], there exists a linear function r : L→ H such that

(60) p′ = r ◦ q′.
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Using identity (60) and the fact that p′ and q′ are bilinear Hilbert space maps, we

calculate, for f1, f2 ∈ L2(µ) and g1, g2 ∈ L2(ν),〈
r
(
q′(f1, g1)

)
, r
(
q′(f2, g2)

)〉
H

=
〈
p′(f1, g1), p′(f2, g2)

〉
H

= 〈f1, f2〉µ〈g1, g2〉ν =
〈
q′(f1, g1), q′(f2, g2)

〉
µ×ν .

By linearity, the above identity extends to

(61)
〈
r(e1), r(e2)

〉
H

= 〈e1, e2〉µ×ν , for all e1, e2 ∈ L.

This, in particular, means that r is an isometry and, therefore, by density of L,

it extends to a continuous linear map defined on the whole space L2(µ × ν). We

denote this extension again by r, so we still have (60), which, by the bijectivity of

the map in (59), gives

p = r ◦ q.
By continuity of r and density of L, we see that (61) holds for all e1, e2 ∈ L2(µ×ν),

as required. �

12. Two representations of L0(λ,T) and a Hilbert space map

In addition to the unitary representations σ and τ defined in Section 9, the

following unitary representation will be used.

Representations ρU,ῑ and ρU,e. Let y, z ∈ N[Z×]. Let U be a basic set for

y ⊕ z and let ῑ be as in (6) for y and z. Then, ῑ gives rise to the homeomorphism

hῑ : Cy × Cz → Cy⊕z.

as in (7). Let

(62) µU,ῑ =
((
hῑ
)
∗(µy × µz)

)
� U.

By Lemma 3.4 (i), µU,ῑ is a finite measure on C0
y⊕z that is marginally compatible

with y ⊕ z. This observation allows us to consider the representation ρU,ῑ equal to

ρy⊕z on L2(µU,ῑ), that is, ρU,ῑ is given by

L0 × L2(µU,ῑ) 3 (φ, f)→ ρy⊕z(φ)
(
f
)
∈ L2(µU,ῑ).

Let z ∈ N[Z×]. Let U be a basic set for (−1)z, and let

e : Cz → C(−1)z,

be the homeomorphism as in (8) with ` = −1. Put

(63) µU,e = e∗(µz) � U.

By Lemma 3.6, µU,e is a finite measure on C0
(−1)z that is marginally compatible

with (−1)z. As above, we can now consider the representation ρU,e equal to ρ(−1)z

on L2(µU,e), that is,

L0 × L2(µU,e) 3 (φ, f)→ ρ(−1)z(φ)
(
f
)
∈ L2(µU,e).

The following lemma gives the desired connections between the representations

ρU,ῑ ρU,e and σ. It uses the work from Sections 9, 10, and 11.
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Lemma 12.1. (i) Let U and ῑ be as in the definition of ρU,ῑ. There is a Hilbert

space map

ΨU,ῑ : L2(µU,ῑ)→ H0(γ)

that is equivariant between ρU,ῑ and σ.

(ii) Let U and e be as in the definition of ρU,e. There is a Hilbert space map

ΨU,e : L2(µU,e)→ H0(γ)

that is equivariant between ρU,e and σ.

Proof. (i) We need to set up some notation. We have ῑ = (ιy, ιz) for some

ιy : D(y)→ D(y ⊕ z) and ιz : D(z)→ D(y ⊕ z).

Let U = JuK for some injection u : D(y ⊕ z)→ 2n. Define injections v : D(y)→ 2n

and w : D(z)→ 2n by letting

v = u ◦ ιy, and w = u ◦ ιz.

By Lemma 3.3, we have

(64) hῑ(JvK× JwK) = U.

The canonical bilinear Hilbert space map, as in (58) with k = 2 and l = 0,

q : L2
(
µy � JvK

)
× L2

(
µz � JwK

)
→ L2

(
µy � JvK× µz � JwK

)
is given by

q
(
f, g
)
(α, β) = f(α)g(β).

The following claim gives the relevant to us equivariance property of q.

Claim 1. There is a Hilbert space isomorphism

r′ : L2(µU,ῑ)→ L2
(
µy � JvK× µz � JwK

)
such that the bilinear Hilbert map

(r′)−1 ◦ q : L2(µy � JvK)× L2(µz � JwK)→ L2(µU,ῑ)

is equivariant between (ρy, ρz) on L2(µy � JvK)×L2(µz � JwK) and ρU,ῑ on L2(µU,ῑ).

Proof of Claim 1. For f ∈ L2(µU,ῑ), we define

r′(f) = f ◦ hῑ.

It is clear from (64) and from the definition of µU,ῑ that r′ is a Hilbert space

isomorphism.

It remains to check the equivariance condition on (r′)−1 ◦ q, that is, for φ ∈ L0

and functions f ∈ L2(µy � JvK) and g ∈ L2(µz � JwK), we need to see that

q
(
ρy(φ)

(
f
)
, ρz(φ)

(
g
))
◦ h−1

ῑ = ρU,ῑ(φ)
(
q(f, g) ◦ h−1

ῑ

)
.

Checking the condition above amounts to showing that

q
(
Ry(φ)f, Rz(φ)g

)
=
(
Ry⊕z(φ) ◦ hῑ)

)
q(f, g),

which is a restatement of Lemma 3.10 (i). The claim is proved.
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Note that v and w have disjoint images since ιy and ιz have disjoint images and u

is injective. By Lemma 10.1, these conditions guarantee the existence of a bilinear

Hilbert space map

p : L2(µy � JvK)× L2
(
µz � JwK

)
→ H0(γ).

By Lemma 11.1, p factors through the canonical bilinear map q. The factorization

produces a Hilbert space map

r : L2
(
µy � JvK× µz � JwK

)
→ H0(γ)

so that p = r ◦ q.
Let

r′ : L2(µU,ῑ)→ L2
(
µy � JvK× µz � JwK

)
be the Hilbert space isomorphism from Claim 1. Define

ΨU,ῑ = r ◦ r′ : L2(µU,ῑ)→ H0(γ).

Clearly, this is a Hilbert space map.

It remains to show that ΨU,ῑ is equivariant between ρU,ῑ and σ. Set

q′ = (r′)−1 ◦ q.

Then, by Claim 1, q′ is an equivariant bilinear Hilbert space map and obviously

p = ΨU,ῑ ◦ q′.

Now the equivariance of ΨU,ῑ follows from this equation, the equivariance of p and

q′, and the density of the linear span of the image of q′, which is equal to the image

of q, in the space L2
(
µy � JvK× µz � JwK

)
.

(ii) This is similar to (i). Let U = JuK for some injection u : D((−1)z) → 2n.

Define an injection w : D(z)→ 2n by letting w(k, i) = u(−k, i). An easy calculation

shows that

(65) e
(
JwK
)

= U.

The canonical semilinear Hilbert space map, as in (58) with k = 0 and l = 1,

q : L2
(
µz � JwK

)
→ L2

(
µz � JwK

)
is q(f) = f . The following claim gives the equivariance property of q.

Claim 2. There is a Hilbert space isomorphism

r′ : L2(µU,e)→ L2
(
µz � JwK

)
such that the Hilbert map

(r′)−1 ◦ q : L2(µz � JwK)→ L2(µU,e)

is equivariant between ρz on L2(µz � JwK) and ρU,e on L2(µU,e).
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Proof of Claim 2. For f ∈ L2(µU,ῑ), we define

r′(f) = f ◦ e.

From (65) and from the definition of µU,e, r
′ is a Hilbert space isomorphism.

To check the equivariance of (r′)−1 ◦ q, we have to show that, for φ ∈ L0 and a

function g ∈ L2(µz � JwK),

q
(
ρz(φ)(g)

)
◦ e−1 = ρU,e(φ)

(
q(g) ◦ e−1

)
.

This condition is equivalent to

Rz(φ)g =
(
R(−1)z ◦ e

)
g,

which is Lemma 3.10 (ii) with ` = −1 since Rz(φ) = Rz(φ)−1. The claim follows.

By Lemma 10.1, there exists a semilinear Hilbert space map

p : L2
(
µz � JwK

)
→ H0(γ).

By Lemma 11.1, p factors through the canonical map q. The factorization produces

a Hilbert space map

r : L2
(
µz � JwK

)
→ H0(γ)

so that p = r ◦ q. We take now r′ from Claim 2 and define ΨU,e = r ◦ r′. This is a

Hilbert space map. To see the equivariance of ΨU,e between ρU,e and σ, set

q′ = (r′)−1 ◦ q.

Then, by Claim 2, q′ is an equivariant semilinear Hilbert space map and obviously

p = ΨU,e ◦ q′. The equivariance of ΨU,e follows from this equation, the equivariance

of p and q′, and the surjectivity of q′. �

13. Proof of Theorem 5.1

By Lemmas 3.5 (ii) and 3.7 (ii), the general case reduces to proving

(66) µy ⊗ µz � µy⊕z

and

(67) (−1)µz � µ(−1)z.

We show (66) first. Set x = y⊕ z. Note that, for each set U basic for x, we have

(68)
(
µy ⊗ µz

)
� U =

∑
ῑ

µU,ῑ,

where ῑ ranges over all pairs as in (6) for y and z and µU,ῑ is as in (62). Recall that

basic sets for x form a basis of C0
x by Lemma 3.1 and µy ⊗ µz is concentrated in

C0
x by Lemma 3.4 (ii). So, by (68), to see (66), it suffices to show that, for each set

U basic for x and each ῑ as above,

µU,ῑ � µx.

It will be enough to see that, for each compact set K ⊆ U , if µU,ῑ(K) > 0, then

µx(K) > 0.
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Fix a compact set K ⊆ U with µU,ῑ(K) > 0. Consider

Γ = Φ ◦ΨU,ῑ : L
2(µU,ῑ)→ Hτ ,

where Φ and ΨU,ῑ are as in (40) and Lemma 12.1 (i), respectively. Then Γ is a

Hilbert space map and, by Lemma 8.1 in combination with Lemma 8.3, we have

(69) Γ
(
L2(µU,ῑ � K)

)
⊆ [x,K]τ .

Since µU,ῑ(K) > 0, the space L2(µU,ῑ � K) is nontrivial. Therefore, since Γ, being a

Hilbert space map, is an embedding, Γ
(
L2(µU,ῑ � K)

)
is non-trivial, which, by (69),

makes the space [x,K]τ non-trivial. Now, it follows, by Lemma 8.2, that there exits

j, for which the space L̃2(µjx � K̃) is non-trivial, that is, µjx(K̃) > 0. (Recall the

definition of K̃ from (35).) Since µjx, being compatible with x, is invariant under

all good homeomorphisms of Cx, this last inequality gives µjx(K) > 0. Since, for

each j, µjx � µx, we get µx(K) > 0, as required.

The proof of (67) is similar. Since, for each set U basic for (−1)z, we have

(−1)µz � U = µU,e,

where µU,e is as in (63), it suffices to see that, for each compact set K ⊆ U , if

µU,e(K) > 0, then µ(−1)z(K) > 0. We fix a compact set K ⊆ U with µU,e(K) > 0

and consider

Γ = Φ ◦ΨU,e : L2(µU,e)→ Hτ ,

where Φ and ΨU,e are as in (40) and Lemma 12.1 (ii), respectively. Then Γ is a

Hilbert space map, for which, by combining Lemmas 8.1 and 8.3, we have

Γ
(
L2(µU,e � K)

)
⊆ [(−1)z,K]τ .

The proof is now finished as in the case of (66).
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[13] A. del Junco, M. Lemańczyk, Generic spectral properties of measure-preserving maps and

applications, Proc. Amer. Math. Soc. 115 (1992), 725–736.

[14] A. Katok, Combinatorial Constructions in Ergodic Theory and Dynamics, University Lecture

Series, 30, American Mathematical Society, 2003.

[15] A. S. Kechris, Global Aspects of Ergodic Group Actions, Mathematical Surveys and Mono-

graphs, 160, American Mathematical Society, 2010.

[16] J. L. F. King, The generic transformation has roots of all orders, Colloq. Math. 84/85 (2000),

521–547.
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