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Abstract. First, we prove a theorem on dynamics of actions of monoids by

endomorphisms of semigroups. Second, we introduce algebraic structures suit-

able for formalizing infinitary Ramsey statements and prove a theorem that

such statements are implied by the existence of appropriate homomorphisms

between the algebraic structures. We make a connection between the two

themes above, which allows us to prove some general Ramsey theorems for se-

quences. We give a new proof of the Furstenberg–Katznelson Ramsey theorem;

in fact, we obtain a version of this theorem that is stronger than the original

one. We answer in the negative a question of Lupini on possible extensions of

Gowers’ Ramsey theorem.
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1. Introduction

The main point of the paper is studying actions of monoids and establishing

a relationship between monoid actions and Ramsey theory. Further, we make a

connection with partial orders that have earlier proved important in set theoretic

considerations.

In Section 2, we study the dynamics of actions of monoids by continuous endo-

morphisms on compact right topological semigroups. We outline now the notions

relevant to this study and its outcome: (1) a partial order Y(M); (2) a class of

monoids; and (3) the theorem on dynamics of monoid actions.

(1) We associate with each monoid M a partial order Y(M) on which M acts

in an order preserving manner. We define first the order X(M) consisting of all

principal right ideals in M , that is, sets of the form aM for a ∈ M , with the

order relation ≤X(M) being inclusion. This order is considered in the representation

theory of monoids as in [14]. The monoid M acts on X(M) by left translations.

We then let Y(M) consist of all non-empty linearly ordered by ≤X(M) subsets of

X(M). We order Y(M) by end-extension, that is, we let x ≤Y(M) y if x is included

in y and all elements of y \ x are larger with respect to ≤X(M) than all elements

of x. The construction of the partial order Y(M) from the partial order X(M) is

a special case of a set theoretic construction going back to Kurepa [9]. An order

preserving action of the monoid M on Y(M) is induced in the natural way from its

action on X(M).

(2) We introduce a class of monoids we call almost R-trivial, which contains

the well known class of R-trivial monoids, see [14], and all the monoids of interest

to us. In a monoid M , by the R-class of a ∈ M we understand, as in [14],

the equivalence class of a with respect to the equivalence relation that makes two

elements equivalent if the principal right ideals generated by the two elements

coincide, that is, b1 and b2 are equivalent if b1M = b2M . We call a monoid M

almost R-trivial if for each element b whose R-class has strictly more than one

element we have ab = b for each a ∈ M . (A monoid is R-trivial if the R-class of

each element contains only that element.) In Section 2.3, we provide the relevant

examples of almost R-trivial monoids.

(3) In Theorem 2.4, which is the main theorem of Section 2, we show that

each action of a finite almost R-trivial monoid by continuous endomorphisms on

a compact right topological semigroup contains, in a precise sense, the action of

M on Y(M); in fact, it contains a natural action of M by endomorphisms on the

semigroup 〈Y(M)〉 generated canonically by Y(M), Corollary 2.7. This result was

inspired by Ramsey theoretic considerations, but it may also be of independent

dynamical interest.

In Section 3, we introduce new algebraic structures, we call function arrays,

that are appropriate for formalizing various Ramsey statements concerning se-

quences. We isolate the notions of basic sequence and tame coloring. In The-

orem 3.1, the main theorem of this section, we show that finding a basic sequence

on which a given coloring is tame follows from the existence of an appropriate ho-

momorphism. This theorem reduces proving a Ramsey statement to establishing
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an algebraic property. We introduce a natural notion of tensor product of the alge-

braic structures studied in this section, which makes it possible to strengthen the

conclusion of Theorem 3.1.

In Section 4, we connect the previous two sections with each other and explore

Ramsey theoretic issues. In Corollary 4.1, we show that the main result of Section 2

yields a homomorphism required for the main result of Section 3. This corollary

has various Ramsey theoretic consequences. For example, we introduce a notion of

Ramsey monoid and prove that, among finite almost R-trivial monoids M , being

Ramsey is equivalent to linearity of the order X(M). We use this result to show

that an extension of Gowers’ Ramsey theorem [4] inquired for by Lupini [10] is

false. As other consequences, we obtain some earlier Ramsey results by associating

with each of them a finite almost R-trivial monoid. For example, we show the

Furstenberg–Katznelson Ramsey theorem for located words, which is stronger than

the original version of the theorem from [3]. Our proof is also different from the

one in [3].

We state here one Ramsey theoretic result from Section 4, which has Fursten-

berg–Katznelson’s and Gowers’ theorems, [3], [4], as special instances; see Sec-

tion 4.3. Let M be a monoid. By a located word over M we understand a

function from a finite non-empty subset of N to M . For two such words w1 and

w2, we write w1 ≺ w2 if the largest element of the domain of w1 is smaller than the

smallest element of the domain of w2. In such a case, we write w1w2 for the located

word that is the function whose graph is the union of the graphs of w1 and w2. For

a located word w and a ∈M , we write a(w) for the located word that results from

multiplying on the left each value of w by a. Given a finite coloring of all located

words, we are interested in producing a sequence w0 ≺ w1 ≺ · · · of located words,

for which we control the color of

a0(wn0
) · · · ak(wnk

),

for arbitrary a0, . . . , ak ∈ M and n0 < · · · < nk. The control over the color is

exerted using the partial order Y(M) introduced above. With each partial order

(P,≤P ), one naturally associates a semigroup 〈P 〉, with its binary operation de-

noted by ∨, that is the semigroup generated freely by the elements of P subject to

the relations

(1.1) p ∨ q = q ∨ p = q if p ≤P q.

We consider the semigroup 〈Y(M)〉 produced from the partial order Y(M) in this

manner. We now have the following statement, which is proved as Corollary 4.3.

Let M be almost R-trivial and finite. Fix a finite subset F of the semigroup 〈Y(M)〉
and a maximal element y of the partial order Y(M). For each coloring with finitely

many colors of all located words over M , there exists a sequence

w0 ≺ w1 ≺ w2 ≺ · · ·

of located words such that the color of

a0(wn0
) · · · ak(wnk

),
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for a0, . . . , ak ∈M and n0 < · · · < nk, depends only on the element

a0(y) ∨ · · · ∨ ak(y)

of 〈Y(M)〉 provided that a0(y) ∨ · · · ∨ ak(y) ∈ F .

One can view a0(y) ∨ · · · ∨ ak(y) as the “type” of a0(wn0
) · · · ak(wnk

) and the

theorem as asserting that the color of a0(wn0
) · · · ak(wnk

) depends only on its type.

In general, the element a0(y)∨ · · · ∨ ak(y) contains much less information than the

located word a0(wn0) · · · ak(wnk
), due partly to the disappearance of wn0 , . . . , wnk

and partly to the influence of relations (1.1).

We comment now on our view of the place of the present work within Ramsey

theory. A large portion of Ramsey Theory can be parametrized by a triple (a, b, c),

where a, b, c are natural numbers or ∞ and a ≤ b ≤ c. (We exclude here, for

example, a very important part of Ramsey theory called structural Ramsey theory,

for which a general approach is advanced in [6].) The simplest Ramsey theorems

are those associated with a ≤ b <∞ = c. (For example, for each finite coloring of

all a-element subsets of an infinite set C, there exists a b-element subset of C such

that all of its a-element subsets get the same color.) These simplest theorems are

strengthened in two directions.

Direction 1: a ≤ b ≤ c <∞. This is the domain of Finite Ramsey Theory. (For

example, for each finite coloring of all a-element subsets of a c-element set C, there

exists a b-element subset of C such that all of its a-element subsets get the same

color.) Appropriate structures for this part of the theory are described in [13].

Direction 2: a = b = c =∞. This is the domain of Infinite Dimensional Ramsey

Theory. (For example, for each finite Borel coloring of all infinite element subsets

of an infinite countable set C, there exists an infinite subset of C such that all of

its infinite subsets get the same color.) Appropriate structures for this theory were

developed in [16] and a General Ramsey Theorem for them was proved there.

The frameworks in 1 and 2 are quite different in particulars, but, roughly speak-

ing, the General Ramsey Theorems (GRT) in both cases have the same form:

GRT: Pigeonhole Principle implies Ramsey Statement.

Such GRT, reduces proving concrete Ramsey statements to proving appropriate

pigeonhole principles. In 1, pigeonhole principles are either easy to check directly

or, more frequently, they are reformulations of Ramsey statements proved earlier

using GRT with the aid of easier pigeonhole principles. So it is a self-propelling

system. In 2, pigeonhole principles cannot be obtained this way and they require

separate proofs. (The vague reason for this is that the pigeonhole principles here

correspond to the case b = c =∞ and a = potential ∞.)

This paper can be viewed as providing appropriate structures and general the-

orems that handle proofs of pigeonhole principles in 2. These structures are quite

different from those in 1 and 2.

The concurrently written interesting paper [11] also touches on the theme of

ultrafilter methods in Ramsey theory. This work and ours are independent from

each other.
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2. Monoid actions on semigroups

The theme of this section is purely dynamical. We study actions of finite monoids

on compact right topological semigroups by continuous endomorphisms. We isolate

the class of almost R-trivial monoids that extends the well studied class of R-trivial

monoids. We prove in Theorem 2.4 that each action of an almost R-trivial finite

monoid M on a compact right topological semigroup by continuous endomorphisms

contains, in a precise sense, a finite action defined only in terms of M . This finite

action is an action of M on a partial order Y(M) introduced in Section 2.1. An

important to us reformulation of Theorem 2.4 is done in Corollary 2.7.

2.1. Monoid actions on partial orders. A monoid is a semigroup with a dis-

tinguished element that is a left and right identity. By convention, if a monoid acts

on a set, the identity element acts as the identity function.

Let M be a monoid. By an M-partial order we understand a set X equipped

with an action of M and with a partial order ≤X such that if x ≤X y, then

ax ≤X ay, for x, y ∈ X and a ∈M . Let X and Y be M -partial orders. A function

f : X → Y is an epimorphism if f is onto, f is M -equivariant, and ≤Y is the

image under f of ≤X . We say that an M -partial order X is strong if, for all y ∈ X
and a ∈M ,

{ax ∈ X : x ≤X y} = {x ∈ X : x ≤X ay}.
For a monoid M , consider M acting on itself by multiplication on the left. Set

(2.1) X(M) = {aM : a ∈M}

with the order relation being inclusion. Then, X(M) is an M -partial order. We

actually have more.

Lemma 2.1. Let M be a monoid. Then X(M) is a strong M -partial order.

Proof. We need to see that if cM ⊆ abM , then there is c′ such that c′M ⊆ bM and

ac′M = cM . Since cM ⊆ abM , we have c ∈ abM , so c = abd for some d ∈M . Let

c′ = bd. It is easy to check that this c′ works. �

For each finite partial order X, let

(2.2) Fr(X) = {x ⊆ X : x 6= ∅ and x is linearly ordered by ≤X}.

The order relation on Fr(X) is defined by letting for x, y ∈ Fr(X),

x ≤Fr(X) y ⇐⇒ x ⊆ y and i <X j for all i ∈ x and j ∈ y \ x.

Observe that Fr(X) is a forest, that is, it is a partial order in which the set of

predecessors of each element is linearly ordered. (We take this sentence as our

definition of the notion of forest.) As pointed out by Todorcevic, the operation

Fr is a finite version of certain constructions from infinite combinatorics of partial

orders [9], [15].

Let X be an M -partial order. For x ∈ Fr(X) and a ∈M , let

ax = {ai : i ∈ x}.
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Clearly, ax ∈ Fr(X) and M × Fr(X) 3 (a, x) → ax ∈ Fr(X) is an action of M on

Fr(X).

The following lemma is easy to verify.

Lemma 2.2. Let M be a monoid, and let X be a finite M -partial order.

(i) Fr(X) with the action defined above is a strong M -partial order.

(ii) The function π : Fr(X) → X given by π(x) = maxx is an epimorphism

between the two M -partial orders.

For a finite monoid M , set

(2.3) Y(M) = Fr(X(M)).

By Lemma 2.2, Y(M) is a strong M -partial order.

2.2. Compact right topological semigroups. We recall here some basic notions

concerning right topological semigroups.

Let U be a semigroup. As usual, let

E(U)

be the set of all idempotents of U . There is a natural transitive, anti-symmetric

relation ≤U on U defined by

u ≤U v ⇐⇒ uv = vu = u.

This relation is reflexive on the set E(U). So ≤U is a partial order on E(U).

A semigroup equipped with a topology is called right topological if, for each

u ∈ U , the function

U 3 x→ xu ∈ U
is continuous.

In the proposition below, we collect facts about idempotents in compact semi-

groups needed here. They are proved in [16, Lemma 2.1, Lemma 2.3 and Corol-

lary 2.4, Lemma 2.11].

Proposition 2.3. Let U be a compact right topological semigroup.

(i) E(U) is non-empty.

(ii) For each v ∈ E(U) there exists a minimal with respect to ≤U element

u ∈ E(U) with u ≤U v.

(iii) For each minimal with respect to ≤U element u ∈ E(U) and each right ideal

J ⊆ U , there exists v ∈ J ∩ E(U) with uv = u.

If U is equipped with a compact topology, that may not interact with multipli-

cation in any way, then there exists the smallest under inclusion compact two-sided

ideal of U , see [5]. So, for a compact right topological semigroup U , let

I(U)

stand for the smallest compact two-sided ideal with respect to the compact topology

on U .
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2.3. Almost R-trivial monoids. Two elements a, b of a monoid M are called R-

equivalent if aM = bM . Of course, by an R-class of a ∈M we understand the set

of all elements of M that are R-equivalent to a. A monoid M is called R-trivial if

each R-class has exactly one element, that is, if for all a, b ∈M , aM = bM implies

a = b. This notion with an equivalent definition was introduced in [12]. For the

role of R-trivial monoids in the representation theory of monoids see [14, Chapter

2].

Note that if M is R-trivial, then the partial order X(M) can be identified with

M taken with the partial order a ≤M b if and only if a ∈ bM . We call a monoid

M almost R-trivial if, for each b ∈M whose R-class has more than one element,

we have ab = b for all a ∈M .

We present now examples of almost R-trivial monoids relevant in Ramsey theory.

Examples. 1. Let n ∈ N, n > 0. Let

Gn

be {0, . . . , n− 1} with multiplication defined by

i · j = min(i+ j, n− 1).

We set 1Gn = 0.

The monoid Gn is R-trivial since, for each i ∈ Gn, we have iGn = {i, . . . , n− 1}.
The monoid Gn is associated with Gowers’ Ramsey theorem [4], see also [16].

2. Fix n ∈ N, n > 0. Let

In

be the set of all non-decreasing functions that map n onto some k ≤ n. These are

precisely the non-decreasing functions f : n→ n such that f(0) = 0 and f(i+ 1) ≤
f(i) + 1 for all i < n− 1. The multiplication operation is composition and 1 is the

identity function from n to n.

The monoid In is R-trivial. To see this, let f, g ∈ In be such that f ∈ gIn and

g ∈ fIn, that is, f = g ◦ h1 and g = f ◦ h2, for some h1, h2 ∈ In. It follows from

these equations that f(i) ≤ g(i), for all 1 ≤ i ≤ n, and g(i) ≤ f(i), for all 1 ≤ i ≤ n.

Thus, f = g.

The monoid In is associated with Lupini’s Ramsey theorem [10].

3. Fix two disjoint sets A,B, and let 1 not be an element of A ∪B. Let

J(A,B)

be {1} ∪A ∪B. Define multiplication on J(A,B) by letting, for each c ∈ A ∪B,

c · a = c, if a ∈ A;

c · b = b, if b ∈ B.

Of course, we define 1 · c = c · 1 = c for all c ∈ J(A,B). We leave it to the reader

to check that so defined multiplication is associative.

The monoid J(A,B) is almost R-trivial. Indeed, a quick check gives, for a ∈ A
and b ∈ B,

aJ(A,B) = {a} ∪B, bJ(A,B) = B, 1J(A,B) = J(A,B).
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Thus, the only elements of J(A,B), whose R-classes can possible have size bigger

than one, are elements of B. But for all c ∈ J(A,B) and b ∈ B, we have cb = b. It

follows that J(A,B) is almost R-trivial (and not R-trivial if the cardinality of B is

strictly bigger than one).

The monoid J(∅, B) for a one element set B is associated with Hindman’s theo-

rem, see [16], and for arbitrary finite B with the infinitary Hales–Jewett theorem,

see [16]. For arbitrary finite A and B, J(A,B) is associated with the Furstenberg–

Katznelson theorem [3].

2.4. The theorem on monoid actions. In the results of this section, we adopt

the following conventions:

— U is a compact right topological semigroup;

— M is a finite monoid acting on U by continuous endomorphisms.

The following theorem is the main result of this section.

Theorem 2.4. Assume M is almost R-trivial. There exists a function g : Y(M)→
E(U) such that

(i) g is M -equivariant;

(ii) g is order reversing with respect to ≤Y(M) and ≤U ;

(iii) g maps maximal elements of Y(M) to I(U).

Moreover, if X(M) has at most two elements, then g maps maximal elements of

Y(M) to minimal elements of E(U).

We will need the following lemma. Its proof borrows some ideas from [10].

Lemma 2.5. Let F be a strong M -partial order that is a forest. Assume that

f : F → U is M -equivariant. Then there exists g : F → E(U) such that

(i) g is M -equivariant;

(ii) g is order reversing with respect to ≤F and ≤U ;

(iii) g−1(I(U)) contains f−1(I(U)).

Proof. Let A ⊆ F be downward closed. Assume we have a function gA : F → E(U)

such that (i) and (iii) hold and additionally, for all i, j ∈ A,

(?) if i <F j, then gA(j)gA(i) = gA(j).

Note the condition that the values of gA are in E(U), so they are idempotents. Let

B ⊆ F be such that A ⊆ B and all the immediate predecessors of elements of B

are in A. We claim that there exists gB : F → E(U) fulfilling (i), (iii), (?) for all

i, j ∈ B, and gB � A = gA � A.

First, define g′B : F → U by letting, for j ∈ F ,

g′B(j) = gA(ik)gA(ik−1) · · · gA(i1),

where i1 <F · · · <F ik lists the set {i ∈ F : i ≤F j} is the increasing order.

We check that g′B fulfills (i), (iii), and (?) for i, j ∈ B. Point (i) holds since for

each a ∈M we have

a(g′B(j)) = a(gA(ik))a(gA(ik−1)) · · · a(gA(i1))

= gA(a(ik))gA(a(ik−1)) · · · gA(a(i1)) = g′B(a(j)),
(2.4)
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with the second equality holding since the function gA is M -equivariant and the

third one holding by idempotence of the values of gA and the fact that F is an

M -forest. Point (iii) holds since I(U) is a right ideal and the function gA fulfills

(iii). To check (?) for i, j ∈ B with i <F j, let

i1 <F · · · <F ik <F · · · <F il

list all the predecessors of j in the increasing order so that ik = i and, of course,

il = j. Then, since j ∈ B, we have i1, . . . , ik ∈ A and, therefore, we get

g′B(j) = gA(il) · · · gA(ik) = gA(j) · · · gA(i).

By the same computation carried out for i = j ∈ A, we see

(2.5) g′B(i) = gA(i), for i ∈ A.

It follows that

g′B(j)g′B(i) = gA(j) · · · gA(i)gA(i) = gA(j) · · · gA(i) = g′B(j).

This equality shows that (?) holds for i, j ∈ B. Finally, note that (2.5) implies that

g′B � A = gA � A. Thus, g′B has all the desired properties.

To construct gB from g′B , consider UF with coordinstewise multiplication and

the product topology. This is a right topological semigroup. Define H ⊆ UF to

consist of all x ∈ UF such that

(α) the function F 3 i→ xi ∈ U fulfills (i), (iii), and (?) for i, j ∈ B and

(β) xi = gA(i) for all i ∈ A.

First we observe that H is a subsemigroup of UF . Condition (i) is clearly closed

under multiplication. Condition (iii) is closed under multiplication since I(U) is a

two-sided ideal. Condition (?) is closed under multiplication in the presence of (β)

since, for x, y ∈ H and i, j ∈ B with i <F j, we have i ∈ A and, therefore,

xjyjxiyi = xjyjgA(i)gA(i) = xjyjyiyi = xjyj .

This verification shows that (α) is closed under multiplication in the presence of

(β). Condition (β) is closed under multiplication since gA(i) is an idempotent.

Next note that H is compact since all conditions defining H are clearly topo-

logically closed with a possible exception of (?) for i, j ∈ B with i <F j. Note

that in this case i ∈ A. Since x ∈ UF and i ∈ A, we have xi = gA(i), condition

(?) translates to xjgA(i) = xj for i ∈ A and j ∈ B with i <F j. This condition

is closed since U is right topological. Finally note that H is non-empty since g′B
is its element. By Ellis’ Lemma [16, Lemma 2.1], H contains an idempotent. Let

gB ∈ H be such an idempotent. It has all the required properties.

The above procedure describes the passage from gA to gB if all immediate pre-

decessors of elements of B are in A.

We now define g∅ : F → E(U) that fulfills (i), (iii), and (?) for A = ∅, with the

last condition holding vacuously. Note that f has all the properties required of g∅
except its values may not be in E(U). To remedy this shortcoming, consider again

the compact right topological semigroup UF with coordinstewise multiplication

and the product topology. Define H ⊆ UF to consist of all x ∈ UF such that the
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function F 3 i→ xi ∈ U fulfills (i) and (iii) (and, vacuously, (?) for i, j ∈ ∅). Then

H is non-empty since f ∈ H. As above, we check that H is a compact subsemigroup

of UF . Let g∅ be an idempotent in H. Clearly, g∅ has the required properties.

Starting with g∅ and recursively using the procedure of going from gA to gB
described above, we produce gF : F → E(U) fulfilling (i), (iii) and (?) for all i, j ∈ F .

Now define, for j ∈ F ,

(2.6) g(j) = gF (j1) · · · gF (jl),

where j1 <F · · · <F jl = j list all elements of the set {i ∈ F : i ≤F j}. This g

is as required by the conclusion of the lemma. Keeping in mind that all values of

gF are idempotents, we see that point (i) for g holds by the calculation as in (2.4).

Point (iii) for g is clear since it holds for gF , jl = j in formula (2.6), and I(U) is a

two-sided, so left, ideal. To see point (ii) for g, we use an argument similar to one

applied earlier in the proof. To do this, fix i ≤F j in F , and let

i1 <F · · · <F ik = i and j1 <F · · · <F jl = j

list elements of F that are ≤F i and ≤F j, respectively. Note that i1 = j1, . . . , ik =

jk. Using (?) for gF and idempotency of gF (ik) = gF (jk), we see that

g(i)g(j) = gF (i1) · · · gF (ik)gF (j1) · · · gF (jl)

= gF (i1) · · · gF (ik)gF (jk) · · · gF (jl) = g(j),

while using only (?) for gF if i <F j and (?) and idempotency of gF (j) if i = j, we

get

g(j)g(i) = gF (j1) · · · gF (jl)gF (i1) · · · gF (ik)

= gF (j1) · · · gF (jl) = g(j).

Thus, point (ii) is verified for g. Note that point (ii) implies that values of g

are idempotent, that is, they are elements of E(U). Therefore, we checked that

g : F → E(U) and (i)–(iii) hold for g. �

Lemma 2.6. Assume that ab = b, for all a, b ∈M with b 6= 1M . Then there exists

minimal u1 ∈ E(U) such that

(i) u1 ∈ I(U)

(ii) a(u1) = b(u1), for all a, b ∈M with a 6= 1M 6= b.

Proof. Observe that, for a, b ∈M \ {1M}, since ba = a, we have

a(U) = ba(U) = b(a(U)) ⊆ b(U).

By symmetry, we see that a(U) = b(U). Let T be the common value of the images

of U under the elements of M \ {1M}. Clearly T is a compact subsemigroup of U .

Note that

(2.7) a(u) = u, for u ∈ T, a ∈M.

Let

u0 ∈ T
be a minimal with respect to ≤T idempotent.
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Let u1 ∈ U be a minimal idempotent in U with u1 ≤U u0. Since u1 is minimal,

we have

(2.8) u1 ∈ I(U).

We show that

(2.9) a(u1) = u0, for all a ∈M \ {1M}.

Indeed, since u1 ≤U u0 and u0 ∈ T , by (2.7), we get

a(u1) ≤U a(u0) = u0.

Thus, a(u1) ≤T u0 and a(u1) ∈ T . Since u0 is minimal in T , we get a(u1) = u0.

Equations (2.8) and (2.9) show that u1 is as required. �

Proof of Theorem 2.4. Let

B = {b ∈M : ab = b for all a ∈M}.

Note that M ′ = {1M}∪B is a monoid fulfilling the assumption of Lemma 2.6. Let

u1 ∈ U be an element as in the conclusion of Lemma 2.6.

Define a function h : M → U by h(a) = a(u1). Note that h is M -equivariant if

M is taken with left multiplication action. Observe the following two implications:

(a) if a1 ∈M \B, a2 ∈M , and a1M = a2M , then a1 = a2;

(b) if a ∈M and b ∈ B, then bM ⊆ aM .

Point (a) follows from M being almost R-trivial. Point (b) is a consequence of

b = ab ∈ aM . Let ρ : M → X(M) be the equivariant surjection ρ(a) = aM . Note

that by (a) and (b), ρ is injective on M \ B, all points in B are mapped to a

single point of X(M) that is the smallest point of this partial order, and no point

of M \B is mapped to this smallest point. It now follows from the properties of u1

listed in Lemma 2.6 that h factors through ρ giving a function h′ : X(M)→ U with

h′ ◦ρ = h. Since ρ and h are M -equivariant, so is h′. Let π : Y(M)→ X(M) be the

M -equivariant function given by Lemma 2.2(ii). Then f : Y(M) → U , defined by

f = h′◦π, is M -equivariant. Furthermore, since u1 ∈ I(U) gives h(1M ) ∈ I(U), and

hence h′(1MM) ∈ I(U), we see that the maximal elements of Y(M) are mapped

by f to I(U). Note that if X(M) has at most two elements, then we can let g = f .

Then h′(1MM) is an idempotent minimal with respect to ≤U , and g maps all

maximal elements of Y(M) to h′(1MM). Without any restrictions on the size of

X(M), Lemma 2.5 can be applied to f giving a function g as required by points

(i)–(iii). �

2.5. Semigroups from partial orders and a restatement of the theorem.

For a partial order P , let

〈P 〉

be the semigroup, whose binary operation is denoted by ∨, generated freely by

elements of P modulo the relations

(2.10) p ∨ q = q ∨ p = q, for p, q ∈ P with p ≤P q.
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That is, each element of 〈P 〉 can be uniquely written as p0∨· · ·∨pn for some n ∈ N
and with pi and pi+1 being incomparable with respect to ≤P , for all 0 ≤ i < n.

Note that if P is linear, then 〈P 〉 = P .

Observe that if M is a monoid and P is an M -partial order, then the action of

M on P naturally induces an action of M on 〈P 〉 by endomorphisms, namely, for

a ∈M and p0 ∨ · · · ∨ pn ∈ 〈P 〉 with p0, . . . , pn ∈ P , we let

(2.11) a(p0 ∨ · · · ∨ pn) = a(p0) ∨ · · · ∨ a(pn).

It is easy to see that the right hand side of the above equality is well defined and

that formula (2.11) defines an endomorphism of 〈P 〉 and, in fact, an action of M

on 〈P 〉.
A moment of thought convinces one that the function from Theorem 2.4 extends

to a homomorphism from 〈Y(M)〉 to U—condition (ii) of Theorem 2.4 and the fact

that the function in that theorem takes values in E(U) are responsible for this.

Therefore, we get the following corollary, which we state with the conventions of

Section 2.4.

Corollary 2.7. Assume M is almost R-trivial. There exists an M -equivariant

homomorphism of semigroups g : 〈Y(M)〉 → U that maps maximal elements of

Y(M) to I(U). Additionally, if X(M) has at most two elements, then g maps

maximal elements of Y(M) to minimal idempotents in U .

3. Infinitary Ramsey theorems

The goal of this section is Ramsey theoretic. We introduce structures, we call

function arrays, that generalize the partial semigroup setting of [2]. One important

feature of these structures is their closure under naturally defined tensor product.

For function arrays, we introduce the notion of basic sequence. Basic sequences

appear in Ramsey statements whose aim it is to control the behavior of a color-

ing on them. We introduce a new general notion of such control, which is akin

to finding upper bounds on Ramsey degrees, but whose nature is algebraic. (For

a definition and applications of Ramsey degrees, see, for example, [7].) The main

result then is Theorem 3.1, which gives control over a coloring on a basic sequence

from the existence of an appropriate homomorphism. Thus, proving Ramsey state-

ments is reduced to finding homomorphisms. Furthermore, as mentioned above, we

introduce a natural notion of tensor product for function arrays that allows us to

propagate the existence of homomorphisms and, therefore, to propagate Ramsey

statements.

3.1. Function arrays and total function arrays. Here we recall the notion of

partial semigroup and, more importantly, we introduce our main Ramsey theoretic

structures: function arrays, total function arrays and homomorphisms between

them.

As in [2] and [16], a partial semigroup is a set S with a function (operation)

from a subset of S × S to S such that for all r, s, t ∈ S if one of the two products
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(rs)t, r(st) is defined, then so is the other and (rs)t = r(st). Note that a semigroup

is a partial semigroup whose binary operation is total.

Now, let Λ be a non-empty set. Let S be a partial semigroup and let X be a set.

By a function array over S indexed by Λ and based on X we understand an

assignment to each λ ∈ Λ of a partial function, which we also call λ, from X to S

with the property that for all s0, . . . , sk ∈ S there exists x ∈ X such that, for each

λ ∈ Λ,

(3.1) s0λ(x), . . . , skλ(x) are all defined.

So the domain of each λ ∈ Λ is a subset, possibly proper, of X; condition (3.1)

means, in particular, that x is in the domain of each λ ∈ Λ. We call a function

array as above total if S is a semigroup and the domain each λ ∈ Λ is equal to X.

We call a function array point based if X consist of one point, which we usually

denote by •; so X = {•} in this case. Note that, by condition (3.1), the domain of

each λ is equal to {•}. A point based function array can be, therefore, identified

with a function Λ→ S given by

Λ 3 λ→ λ(•) ∈ S.

Moreover, if S is a semigroup, then a point based function array is automatically

total.

We give now some constructions that will be used in Section 4. Let S be a

partial semigroup. As usual, a function h : S → S is an endomorphism if for all

s1, s2 ∈ S with s1s2 defined, h(s1)h(s2) is defined and h(s1s2) = h(s1)h(s2). Let M

be a monoid. An action of M on S is called is called an endomorphism action

of M on S if, for each a ∈M , the function s→ a(s) is an endomorphism of S and,

for all s1, . . . , sn ∈ S and each a ∈M , there is t ∈ S such that s1a(t), . . . , sna(t) are

defined. Obviously, we will identify such an action with the function α : M×S → S

given by α(a, s) = a(s).

An endomorphism action α of a monoid M on a semigroup S gives rise to two

types of function arrays, both of which are over S and indexed by M but are based

on different sets. The first of these function arrays is based on S and is defined as

follows. Let

(3.2) S(α)

be the function array over S indexed by M and based on S that is obtained by

interpreting each a ∈M as the function from S to S given by the action, that is,

S 3 s→ α(a, s) ∈ S.

The second function array arising from α is point based and needs a specification

of an element of S. So fix s ∈ S. Let

(3.3) S(α)s

be the point based function array over S indexed by M obtained by interpreting

each a ∈M as the function on {•} given by

a(•) = α(a, s).
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Function arrays used in this paper will be of the above form or will be obtained

from such by the tensor product operation defined in Section 3.5.

3.2. Basic sequences and tame colorings. Assume we have function arrays S
and A both indexed by Λ, but with S being over a partial semigroup S and based

on X, while A being over a semigroup A and point based. To make notation clearer,

we use ∨ for the binary operation on A. We write

Λ(•) = {λ(•) : λ ∈ Λ} ⊆ A.

A sequence (xn) of elements of X is called basic in S if for all n0 < · · · < nl
and λ0, . . . , λl ∈ Λ the product

(3.4) λ0(xn0)λ1(xn1) · · ·λl(xnl
)

is defined in S.

We say that a coloring of S is A-tame on (xn), where (xn) is a basic sequence

in S, if the color of the elements of the form (3.4) with the additional condition

(3.5) λk(•) ∨ · · · ∨ λl(•) ∈ Λ(•), for each k ≤ l,

depends only on the element

λ0(•) ∨ · · · ∨ λl(•) ∈ A.

So, subject to condition (3.5), the color on of the product (3.4) is entirely controlled

by λ0(•)∨ · · · ∨λl(•), which, in general, contains much less information than (3.4).

3.3. Total function arrays from function arrays. There is a canonical way

of associating a total function array to each function array, which generalizes the

operation γS of compactification of a directed partial semigroup S from [2]. The

definition of γS, the semigroup structure and compact topology on it should be

recalled here, for example, from [16, p.31]; in particular, we use the symbol ∗ to

denote the semigroup operation on γS, that is, the product of ultrafilters.

Let S be a function array over a partial semigroup S, indexed by Λ and based

on X. Note that (3.1) implies that S is directed as defined in [16, p.30]. It follows

that γS is defined. Let γX be the set of all ultrafilters U on X such that for each

s ∈ S and λ ∈ Λ

{x ∈ X : sλ(x) is defined} ∈ U .

It is clear from condition (3.1) that γX is non-empty. It is also easy to verify that

γX is compact with the usual Čech–Stone topology on ultrafilters. Each λ extends

to a function, again called λ, from γX to γS by the usual formula, for U ∈ γX,

A ∈ λ(U) iff λ−1(A) ∈ U .

It is easy to see that the image of each λ is, indeed, included in γS and each function

λ : γX → γS is continous. Since γS is a semigroup, we get a total function array

over γS, indexed by Λ and based on γX. We denote this total function array by

γS. The topologies on γS and γX will play a role later on.



MONOID ACTIONS AND ULTRAFILTER METHODS IN RAMSEY THEORY 15

3.4. The Ramsey theorem. The following natural notion of homomorphism will

be crucial in stating Theorem 3.1. Assume we have total function arrays A and B
both indexed by Λ, with A being over A and based on X and B being over B and

based on Y . A homomorphism from A to B is a pair of functions (f, g) such

that f : X → Y , g : A → B, g is a homomorphism of semigroups, and, for each

x ∈ X and λ ∈ Λ, we have

λ(f(x)) = g(λ(x)).

The following theorem is the main result of Section 3. The bottom line of it

is that a homomorphism from a point based function array A gives rise to basic

sequences on which colorings are A-tame.

Theorem 3.1. Let A and S be function arrays both indexed by a finite set Λ, with

A being point based and over a semigroup and S being over a partial semigroup S.

Let (f, g) : A → γS be a homomorphism. Then for each D ∈ f(•) and each finite

coloring of S, there exists a basic sequences (xn) of elements of D on which the

coloring is A-tame.

Proof. Consistently with our conventions, ∨ denotes the semigroup operation in

the semigroup over which A is defined. Let S be based on a set X.

Set U = f(•). Observe that if λ(•) = λ′(•), then λ(U) = λ′(U) since

λ(f(•)) = g(λ(•)) = g(λ′(•)) = λ′(f(•)).

This observation allows us to define for σ ∈ Λ(•),

σ(U) = λ(U)

for some, or, equivalently, each, λ ∈ Λ with λ(•) = σ. Observe further that for

σ ∈ Λ(•) we have

(3.6) g(σ) = σ(U).

Indeed, fix λ ∈ Λ with σ = λ(•). Then we have

σ(U) = λ(f(•)) = g(λ(•)) = g(σ).

For P ⊆ X and σ ∈ Λ(•), set

σ(P ) =
⋂
{λ(P ) : λ(•) = σ}.

Note that if P ∈ U and λ ∈ Λ, then λ(P ) ∈ λ(U) since P ⊆ λ−1(λ(P )). So, for

λ with λ(•) = σ, we have λ(P ) ∈ σ(U), and, therefore, by finiteness of Λ, we get

σ(P ) ∈ σ(U).

Consider a finite coloring of S. Let P ∈ U be such that the coloring is constant

on σ(P ) for each σ ∈ Λ(•), using the obvious observation that σ(P ) ⊆ σ(P ′) if

P ⊆ P ′.
Now, we produce xn ∈ X and Pn ⊆ X so that

(i) xn ∈ D, Pn ⊆ P ;

(ii) λ1(xm1
)λ2(u) ∈

(
λ1(•) ∨ λ2(•)

)
(Pm1

), for all m1 < n, all u ∈ Pn, and all

λ1, λ2 ∈ Λ with λ1(•) ∨ λ2(•) ∈ Λ(•);
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(iii) the set of u fulfilling the following condition belongs to U : λ1(xm)λ2(u) ∈(
λ1(•) ∨ λ2(•)

)
(Pm), for all m ≤ n and all λ1, λ2 ∈ Λ with λ1(•) ∨ λ2(•) ∈

Λ(•);
(iv) λ(xm) ∈ λ(•)(Pm), for all m ≤ n and all λ ∈ Λ.

Note that in points (ii) and (iii) above the condition λ1(•) ∨ λ2(•) ∈ Λ(•) ensures

that
(
λ1(•) ∨ λ2(•)

)
(Pm1) and

(
λ1(•) ∨ λ2(•)

)
(Pm) are defined.

Assume we have xm, Pm for m < n as above. We produce xn and Pn so that

points (i)–(iv) above hold. Define Pn by letting

Pn = P ∩
⋂
m<n

Cm,

where Cm consists of those u ∈ X for which, for all λ1, λ2 ∈ Λ,

if λ1(•) ∨ λ2(•) ∈ Λ(•), then λ1(xm)λ2(u) ∈
(
λ1(•) ∨ λ2(•)

)
(Pm).

For n = 0, by convention, we set
⋂
m<n Cm = S. Observe that (ii) holds for n. Our

inductive assumption (iii) implies that Cm ∈ U . Thus, the definition of Pn gives

that P0 = P ∈ U and, for n > 0, Pn ∈ U .

Using (3.6) in the last equality, we have that, for all λ1, λ2 ∈ Λ with λ1(•) ∨
λ2(•) ∈ Λ(•),

λ1(U) ∗ λ2(U) = λ1(f(•)) ∗ λ2(f(•)) = g(λ1(•)) ∗ g(λ2(•))

= g(λ1(•) ∨ λ2(•)) =
(
λ1(•) ∨ λ2(•)

)
(U).

(3.7)

Separately, we note that Pn ∈ U and therefore, for λ1, λ2 ∈ Λ with λ1(•) ∨ λ2(•) ∈
Λ(•), (

λ1(•) ∨ λ2(•)
)
(Pn) ∈

(
λ1(•) ∨ λ2(•)

)
(U) and

λ1(•)(Pn) ∈ λ1(•)(U) = λ1(U).
(3.8)

It follows from (3.7) and (3.8) that we can pick xn for which (iii) and (iv) hold.

Since D ∈ U , we can also arrange that xn ∈ D. So (i) is also taken care of.

Now, it suffices to show that the sequence (xn) constructed above is as needed.

The entries of (xn) come from D by (i). By induction on l, we show that for all

m0 < m1 < · · · < ml and all λ0, λ1, . . . , λl ∈ Λ, we have

(3.9) λ0(xm0
)λ1(xm1

)λ2(xm2
) · · ·λl(xml

) ∈
(
λ0(•) ∨ λ1(•) · · · ∨ λl(•)

)
(Pm0

),

provided that λk(•) ∨ · · · ∨ λl(•) ∈ Λ(•) for all k ≤ l. This claim will establish the

theorem since Pm0
⊆ P by (i).

The case l = 0 of (3.9) is (iv). We check the inductive step for (3.9) using point

(ii). Let l > 0. Fix m0 < m1 < · · · < ml and λ0, λ1, . . . , λl ∈ Λ. By our inductive

assumption, we have

(3.10) λ1(xm1)λ2(xm2) · · ·λl(xml
) ∈

(
λ1(•) ∨ · · · ∨ λl(•)

)
(Pm1).

Let λ ∈ Λ be such that

(3.11) λ(•) = λ1(•) ∨ · · · ∨ λl(•).

Since (
λ1(•) ∨ · · · ∨ λl(•)

)
(Pm1

) ⊆ λ(Pm1
),
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by (3.10), there exists y ∈ Pm1
such that

(3.12) λ(y) = λ1(xm1
)λ2(xm2

) · · ·λl(xml
).

Since m0 < m1 and since y ∈ Pm1
, from (ii) with n = m1, we get

(3.13) λ0(xm0)λ(y) ∈
(
λ0(•) ∨ λ(•)

)
(Pm0).

Note that (ii) can be applied here as λ0(•) ∨ λ(•) ∈ Λ(•) as

λ0(•) ∨ λ(•) = λ0(•) ∨ λ1(•) ∨ · · · ∨ λl(•).

Now (3.9) follows from (3.13) together with (3.11) and (3.12). �

In the proof above, at stage n, xn is chosen arbitrarily from sets belonging to

f(•). It follows that if f(•) is assumed to be non-principal, then the sequence (xn)

can be chosen to be injective.

3.5. Tensor product of function arrays. We introduce and apply a natural

notion of tensor product for function arrays.

Let Λ0, Λ1 be finite sets. Let

Λ0 ? Λ1 = Λ0 ∪ Λ1 ∪ (Λ0 × Λ1),

where the union is taken to be disjoint. Fix a partial semigroup S. Let Si, i = 0, 1,

be function arrays over S indexed by Λi and based on Xi, respectively. Define

S0 ⊗ S1

to be the function array over S indexed by Λ0 ? Λ1 and based on X0 ×X1 defined

as follows. With λ0 ∈ Λ0, λ1 ∈ Λ1, and (λ0, λ1) ∈ Λ0 × Λ1, we associate partial

functions from X0 ×X1 to S by letting

λ0(x0, x1) = λ0(x0), λ1(x0, x1) = λ1(x1), (λ0, λ1)(x0, x1) = λ0(x0)λ1(x1),

where the product on the right hand side of the last equality is computed in S and

the left hand side is declared to be defined whenever this product exists. To check

that the object S0 ⊗ S1 defined above is indeed a function array one needs to see

condition (3.1). To see this fix s0, . . . , sm ∈ S. Pick x0 ∈ X0 with siλ(x0) defined

for all i ≤ m and λ ∈ Λ0. Now pick x1 ∈ X1 with siλ
′(x1) and (siλ(x0))λ′(x1) are

defined for all i ≤ m, λ ∈ Λ0 and λ′ ∈ Λ1. Then clearly si~λ(x0, x1) are defined for

all i ≤ m and ~λ ∈ Λ0 ? Λ1, as required.

It is clear that the operation of tensor product is associative; if each Si, i < n,

is a function array over S indexed by Λi, then
⊗

i<n Si is a function array over

S indexed by Λ0 ? · · · ? Λn−1, which consists of all sequences (λ0, . . . , λm), where

λi ∈ Λji for some j0 < · · · < jm < n. Note that if each Si is point based, then so

is the tensor product.

Proposition 3.2. Let S be a partial semigroup. Let Si, i = 0, 1, be function arrays

over S based on Λi, respectively. Then there is a homomorphism

γS0 ⊗ γS1 → γ(S0 ⊗ S1).
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Proof. Let S0 be based on X0 and S1 on X1. Then γS0⊗γS1 is based on γX0×γX1,

while γ(S0⊗S1) on γ(X0×X1). Consider the natural map γX0×γX1 → γ(X0×X1)

given by

(U ,V)→ U × V,

where, for C ⊆ X0 ×X1,

C ∈ U × V ⇐⇒ {x0 ∈ X0 : {x1 ∈ X1 : (x0, x1) ∈ C} ∈ V} ∈ U .

Then

(f, idγS) : γS0 ⊗ γS1 → γ(S0 ⊗ S1),

where f(U ,V) = U × V, is the desired homomorphism. �

Proposition 3.3. Fix semigroups A and B. For i = 0, 1, let Ai and Bi be total

function arrays over A and B, respectively, indexed by Λi. Let (fi, g) : Ai → Bi be

homomorphisms. Then

(f0 × f1, g) : A0 ⊗A1 → B0 ⊗ B1

is a homomorphism.

Proof. Let Ai be based on a set Xi for i = 0, 1. For (x0, x1) ∈ X0 × X1 and
~λ ∈ Λ0 ∗ Λ1 = Λ0 ∪ Λ1 ∪ (Λ0 × Λ1), we need to check

g(~λ(x0, x1)) = ~λ
(
(f0 × f1)(x0, x1)

)
.

We do it only for ~λ ∈ Λ0 × Λ1, the case ~λ ∈ Λ0 ∪ Λ1 being essentially identical. So

for ~λ ∈ Λ0 × Λ1, we have

g(~λ(x0, x1)) = g(λ0(x0)λ1(x1)) = g(λ0(x0))g(λ1(x1))

= λ0(f0(x0))λ1(f1(x1)) = ~λ
(
(f0 × f1)(x0, x1)

)
,

where the second equality holds since g is a homomorphism of semigroups and the

third equality holds since each (fi, g) is a homomorphism from Ai to Bi. �

3.6. Propagation of homomorphisms. The first application of tensor product

has to do with relaxing condition (3.5). This is done in condition (3.14).

Let A be a point based function array over a semigroup A and indexed by Λ.

As before, we denote by ∨ the binary operation on A. Let F be a subset of A, let

S be a function array over a partial semigroup S indexed by Λ, and let (xn) be a

basic sequence in S. A coloring of S is said to be F -A-tame on (xn) if the color

of elements of the form (3.4) with the additional condition

(3.14) λk(•) ∨ · · · ∨ λl(•) ∈ F, for each k ≤ l,

depends only on the element λ0(•) ∨ · · · ∨ λl(•) of A. The notion of F -A-tameness

becomes A-tameness if F = Λ(•). In applications, it will be desirable to take F

strictly larger than Λ(•) thus making F -A-tameness strictly stronger.

The following corollary is a strengthening of Theorem 3.1, but it follows from

that theorem via the tensor product construction.
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Corollary 3.4. Let A and S be function arrays both indexed by a finite set Λ, with

A being point based and over a semigroup A and S being over a partial semigroup

S. Let (f, g) : A → γS be a homomorphism. Then for each D ∈ f(•), each finite

coloring of S, and each finite set F ⊆ A, there exists a basic sequences (xn) of

elements of D on which the coloring is F -A-tame.

Proof. For a natural number r > 0, by Λ<r we denote the set of all sequences
~λ = (λ0, . . . , λm) of elements of Λ with m < r. We associate with each such ~λ an

element ~λ(•) of A by letting

~λ(•) = λ0(•) ∨ · · · ∨ λm(•).

Since F is finite, there exists r such that

F ∩ {~λ(•) : ~λ ∈
⋃
r′≥1

Λ<r′} ⊆ {~λ(•) : ~λ ∈ Λ<r}.

Thus, fixing this r, it suffices to show the corollary for F = {~λ(•) : ~λ ∈ Λ<r}. We

consider the function arrays A⊗r and (γS)⊗r indexed by Λ∗r. Note that A⊗r is

based on a set consisting of only the r-tuple (•, . . . , •) and that

Λ∗r(•, . . . , •) = {~λ(•) : ~λ ∈ Λ<r}.

Further, by Proposition 3.3, there exists a homomorphism from A⊗r to (γS)⊗r,

which is equal to (fr, g), where fr stands for the r-fold product f × · · · × f . Note

also that D ×Xr−1 ∈ fr(•). Since, by Proposition 3.2, there is a homomorphism

from (γS)⊗r to γ(S⊗r), we are done by Theorem 3.1 by composing the two homo-

morphisms. �

We have one more corollary of Theorem 3.1 and the tensor product construction.

It concerns double sequences. Let S be a function array over S indexed by Λ and

based on X. A double sequence (xn, yn) of elements of X will be called basic if

the single sequence

x0, y0, x1, y1, x2, y2, . . .

is basic. Having a basic sequence (xn, yn), we will be interested in controlling the

color on elements of the form

λ0(xm0
)λ′0(yn0

)λ1(xm1
)λ′1(yn1

)λ2(xm2
)λ′2(yn2

) · · ·λl(xml
)λ′l(ynl

)

and

λ0(xm0
)λ′0(yn0

)λ1(xm1
)λ′1(yn1

)λ2(xm2
)λ′2(yn2

) · · ·λl(xml
)

(3.15)

for m0 ≤ n0 < m1 ≤ n1 < · · · < ml ≤ nl and λ0, λ
′
0, . . . , λl, λ

′
l ∈ Λ.

Let A be a point based total function array over a semigroup A indexed by Λ.

For λ, λ′ ∈ Λ, we say that λ and λ′ are conjugate if λ(•) = λ′(•). For a set F ⊆ A,

we say that a coloring of S is conjugate F -A-tame on (xn, yn) if the color of the

elements of the form (3.15) such that for each k ≤ l

λk and λ′k are conjugate and λk(•) ∨ · · · ∨ λl(•) ∈ F

depends only on

λ0(•) ∨ · · · ∨ λl(•) ∈ A.
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Corollary 3.5. Let A and S be function arrays both indexed by a finite set Λ, with

A being point based and over a semigroup A and S being based on X and over a

partial semigroup S. Let (f, g) : A → γS be a homomorphism. Let v ∈ γX be such

that for each λ ∈ Λ

(3.16) λ(f(•))λ(v) = λ(f(•)).

Then, for each finite subset F of A, D ∈ f(•) and E ∈ v and each finite coloring

of S, there exists a basic sequence (xn, yn), with xn ∈ D and yn ∈ E, on which the

coloring is conjugate F -A-tame.

Proof. Let A be based on {•}. Let

Λ′ = Λ ∪ {(λ0, λ1) ∈ Λ× Λ: λ0(•) = λ1(•)}.

Fix a point •′. Let A′ be the point based function array over A and indexed by Λ′

that is based on the point (•, •′) and such that for λ, (λ0, λ1) ∈ Λ′

λ(•, •′) = λ(•) and (λ0, λ1)(•, •′) = λ0(•).

The index set of γ(S ⊗ S) and γS ⊗ γS is Λ ∗ Λ = Λ0 ∪ Λ1 ∪ (Λ0 × Λ1), where

Λ0 = Λ1 = Λ and the union is disjoint. We view Λ′ as included in Λ ∗ Λ with the

copy of Λ in Λ′ identified with Λ0 in Λ ∗ Λ. This inclusion allows us to consider

γ(S ⊗ S) and γS ⊗ γS with the index set restricted to Λ′, which we do below.

Clearly, any homomorphism γS ⊗ γS → γ(S ⊗ S), when the two function arrays

are indexed by Λ ∗ Λ, is also a homomorphisms when they are indexed by Λ′.

Now, to obtain the conclusion of the corollary, by Corollary 3.4, it suffices to

produce a homomorphism A′ → γ(S⊗S) such that D×E is in the image of (•, •′).
Let f ′ : {•′} → γX be given by f ′(•′) = v. Since, by Proposition 3.2, there is a

homomorphism

(ρ, π) : γS ⊗ γS → γ(S ⊗ S)

and (D,E) ∈ ρ ◦ (f × f ′)(•, •′), it suffices to show that

(f × f ′, g) : A′ → γS ⊗ γS

is a homomorphism. This amounts to showing that if λ, λ0, λ1 ∈ Λ and λ0(•) =

λ1(•), then we have the following two equalities

λ((f × f ′)(•, •′)) = g(λ(•, •′)),
(λ0, λ1)((f × f ′)(•, •′)) = g((λ0, λ1)(•, •′)).

(3.17)

We verify only the second equality, the first one being easier. To start, we note that

λ0(f(•)) = g(λ0(•)) = g(λ1(•)) = λ1(f(•)).

Using this equality and (3.16), we check the second equality in (3.17) by a direct

computation as follows

(λ0, λ1)((f × f ′)(•, •′)) = (λ0, λ1)(f(•), f ′(•′)) = (λ0, λ1)(f(•), v)

= λ0(f(•))λ1(v) = λ1(f(•))λ1(v)

= λ1(f(•)) = λ0(f(•)) = g(λ0(•))
= g((λ0, λ1)(•, •′)). �
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4. Monoid actions and infinitary Ramsey theorems

In this section, M will be a finite monoid.

We connect here the dynamical result of Section 2 with the algebraic/Ramsey

theoretic result of Section 3. This connection is made possible by Corollary 4.1,

which translates Theorem 2.4 (via Corollary 2.7) into a statement about the exis-

tence of a homomorphism needed for applications of Theorem 3.1. Ramsey theoretic

consequences of Corollary 4.1 are investigated later in the section, in particular, a

general Ramsey theoretic result, Corollary 4.3, is derived from it. We also intro-

duce the notion of Ramsey monoid and give a characterization of those among

almost R-trivial monoids. We use this characterization to determine which among

the monoids In from Section 2.3 are Ramsey. This result implies an answer to

Lupini’s question [10] on possible extensions of Gowers’ theorem. We derive some

concrete Ramsey results from our general considerations. For example, we obtain

the Furstenberg–Katznelson Ramsey theorem for located words.

4.1. Connecting Theorems 2.4 and 3.1. In order to apply Theorem 3.1, through

Corollaries 3.4 and 3.5, one needs to produce appropriate homomorphisms between

function arrays. We show how Theorem 2.4, through Corollary 2.7, gives rise to

exactly such homomorphisms. This is done in Corollary 4.1 below. All the Ramsey

theorems are results of combining Corollaries 3.4 and 3.5 with Corollary 4.1.

Let S be a partial semigroup. For A ⊆ S, we say that S is A-directed if for

all x1, . . . , xn ∈ S there exists x ∈ A such that x1x, . . . , xnx are all defined. So S

is directed as defined in [16] if it is S-directed. We say that I ⊆ S is a two-sided

ideal in S if it is non-empty and, for x, y ∈ S for which xy is defined, xy ∈ I if

x ∈ I or y ∈ I.

Recall the definitions of the function arrays from (3.2) and (3.3) in Section 3.1.

Recall also from (2.11) the endomorphism action of M on the semigroup 〈Y(M)〉
generated by Y(M) as in Section 2.5. Denoting this natural action by β and taking

y0 ∈ Y(M), we form the point based total function array 〈Y(M)〉(β)y0 . For the

sake of simplicity, we denote it by

〈Y(M)〉y0 .

The following corollary will be seen to be a consequence of Corollary 2.7.

Corollary 4.1. Assume M is almost R-trivial. Let y ∈ Y(M) be a maximal

element, and let α be an endomorphism action of M on a partial semigroup S. Let

I ⊆ S be a two-sided ideal such that S is I-directed.

(i) There exists a homomorphism (f, g) : 〈Y(M)〉y → γ(S(α)) with

I ∈ f(•).

(ii) Assume that M is the monoid J(∅, B) for a finite set B as defined in Sec-

tion 2.3. If E ⊆ S is a right ideal such that S is E-directed, then there exists

a homomorphism (f, g) : 〈Y(M)〉y → γ(S(α)) and an ultrafilter V ∈ γ(S)

such that

I ∈ f(•)
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and, additionally,

E ∈ V and f(•) ∗ V = f(•).

To prove Corollary 4.1, we will need the following lemma, whose proof is stan-

dard.

Lemma 4.2. Let S be a partial semigroup.

(i) Let I be a two-sided ideal in S such that S is I-directed. Then {U ∈ γS : I ∈
U} is a compact two-sided ideal in γS.

(ii) Let E be a right ideal in S such that S is I-directed. Then {U ∈ γS : E ∈ U}
is a compact right ideal in γS.

Proof. We give an argument only for (i); the argument for (ii) being similar.

For x ∈ S, let S/x = {y ∈ S : xy is defined}.
Let H = {U ∈ γS : I ∈ U}. Then, by definition, H is clopen. It is non-empty

since, by I-directedness of S, the family {I}∪{S/x : x ∈ S} of subsets of S has the

finite intersection property, so it is contained in an ultrafilter, which is necessarily

an element of H.

We check that I ∈ U ∗ V if I ∈ U or I ∈ V. Assume first that I ∈ U . For

x ∈ I, S/x ⊆ {y : xy ∈ I}, therefore, since S/x ∈ V, for each x ∈ I, we have

{y : xy ∈ I} ∈ V. So I ⊆ {x : {y : xy ∈ I} ∈ V}. Since I ∈ U , we get

{x : {y : xy ∈ I} ∈ V} ∈ U

which means I ∈ U ∗ V. Assume now I ∈ V. For each x ∈ S, we have I ∩ (S/x) ⊆
{y : xy ∈ I}. Therefore, since I, S/x ∈ V, we have {y : xy ∈ I} ∈ V for each x ∈ S.

So

{x : {y : xy ∈ I} ∈ V} = S ∈ U ,
which means I ∈ U ∗ V. �

Proof of Corollary 4.1. (i) We denote by γI the compact two sided ideal {U ∈
γS : I ∈ U} from Lemma 4.2.

Observe that the action α naturally induces an action of M by continuous en-

domorphisms on γS. We call this resulting action γα. By Corollary 2.7, there

exists a homomorphism g : 〈Y(M)〉 → γS such that all maximal elements of Y(M)

are mapped to I(S). In particular, g(y) ∈ I(γS). Since, by Lemma 4.2, γI is a

compact two-sided ideal, we have I(γS) ⊆ γI. Thus, g(y) ∈ γI, that is,

I ∈ g(y).

Note now that if we let f(•) = g(y), then (f, g) : 〈Y(M)〉y → (γS)(γα) is a homo-

morphism. A quick check of definitions gives (γS)(γα) = γ(S(α)). Thus, (f, g) is

as required.

(ii) We proceed constructing g and f as in point (i) above. So we have I ∈ f(•).
We note that X(M) consists of two points: the R-class of 1M and the R-class

consisting of all elements of B. Thus, by the last sentence of Corollary 2.7, f(•)
is a minimal idempotent in γ(S). Now consider J = {U ∈ γS : E ∈ U}, which by

Lemma 4.2 is a compact right ideal in γ(S). By Proposition 2.3(iii), there exists
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an idempotent V ∈ J with f(•) ∗ V = f(•). Since V ∈ J , we have E ∈ V, which

completes the proof. �

4.2. Ramsey theorems from monoids. Given a sequence (Xn) of sets, let

〈(Xn)〉

consist of all finite sequences x1 · · ·xk for k ∈ N, for which there exist m1 <

· · · < mk such that xi ∈ Xmi . We make this set into a partial semigroup by

declaring the product (x1 · · ·xk)(y1 · · · yl) of two such sequences defined if there

exist m1 < · · · < mk < n1 < · · · < nl such that xi ∈ Xmi
and yi ∈ Xni

and

then letting the product be equal to the concatenation x1 · · ·xky1 · · · yl of the two

sequences. Two special cases of this construction are usually considered.

(1) We fix a set X, and let Xn = X for each n. In this case, 〈(Xn)〉 is a

semigroup, not just a partial semigroup, of all words in X with concatenation as

the semigroup operation.

(2) We fix a set X, and let Xn = {n} × X for each n. In this case, 〈(Xn)〉 is

isomorphic to the partial semigroup of located words in X, that is, all partial

functions from N to X with finite domains, where two such functions f and g have

their product defined if all elements of the domain of f are smaller than all elements

of the domain of g, and the product is set to be the function whose graph is the

union of the graphs of f and g. The identification

〈(Xn)〉 3 (m1, x1) · · · (mk, xk)→ f

where the domain of f is {m1, . . . ,mk} and f(mi) = xi, establishes a canonical

isomorphism between 〈(Xn)〉 and the partial semigroup of located words.

Since making the assumptions as in (1) or (2) causes no simplification in our ar-

guments, we work with the general definition of 〈(Xn)〉 as above. We only note that

a Ramsey statement (like the ones given later in this paper) formulated for located

words as in (2) is stronger than the analogous statement formulated for words as in

(1). One derives the latter from the former by applying the map associating with

a located word f defined on a set {m1, . . . ,mk} the word f(m1) · · · f(mk).

A pointed M-set is a set X equipped with an action of M and a distinguished

point x such that Mx = X. Let (Xn) be a sequence of pointed M -sets. The monoid

M acts on 〈(Xn)〉 in the natural manner:

a(x1 · · ·xk) = a(x1) · · · a(xk), for a ∈M and x1 · · ·xk ∈ 〈(Xn)〉.

Note that since xi ∈ Xmi implies that a(xi) ∈ Xmi , the action above of each element

of M is defined on each element of 〈(Xn)〉. It is clear that this is an endomorphism

action.

A sequence (wi) of elements of 〈(Xn)〉 is called basic in 〈(Xn)〉 if for all i1 <

· · · < ik, the product wi1 · · ·wik is defined. We note that if each Xn is a pointed

M -set for a monoid M and the sequence (wi) is basic, then for i1 < · · · < ik
and a1, . . . , ak ∈ M the product a1(wi1) · · · ak(wik) is defined. For this reason

no confusion will arise from using the word basic to describe certain sequences



24 S LAWOMIR SOLECKI

in 〈(Xn)〉 and certain sequences in base sets of function arrays over 〈(Xn)〉 as in

Section 3.2.

We will register the following general result that follows from Corollary 3.4 and

Corollary 4.1(i). This result allows us to control the color of words as in (4.1) by

their “type” as in (4.2).

Corollary 4.3. Assume M is almost R-trivial. Let F be a finite subset of the

semigroup 〈Y(M)〉, whose operation is denoted by ∨. Let y ∈ Y(M) be a maximal

element of the forest Y(M). Given pointed M -sets Xn, n ∈ N, for each finite

coloring of 〈(Xn)〉, there exist a basic sequence (wi) in 〈(Xn)〉 such that

(i) for each i, wi contains the distinguished point of some Xn and

(ii) for each i0 < · · · < ik and a0, . . . , ak ∈M , the color of

(4.1) a0(wi0) · · · ak(wik)

depends only on

(4.2) a0(y) ∨ · · · ∨ ak(y)

provided a0(y) ∨ · · · ∨ ak(y) ∈ F .

Proof. We regard S = 〈(Xn)〉 as a partial semigroup with concatenation as a par-

tial semigroup operation and with the natural action α of M . This leads to the

function array S(α). Let I be the subset of 〈(Xn)〉 consisting of all words that

contain a distinguished element of some Xn. It is clear that I is a two-sided ideal

and that 〈(Xn)〉 is I-directed. By Corollary 4.1(i), there exists a homomorphism

(f, g) : 〈Y(M)〉y → γS(α) with I ∈ f(•).
It is evident from the definition of 〈Y(M)〉 that we can find a finite set F ′ ⊆

〈Y(M)〉 such that if z0, . . . , zl ∈ Y(M) and z0 ∨ · · · ∨ zl ∈ F , then zk ∨ · · · ∨ zl ∈ F ′
for each 0 ≤ k ≤ l. Now, from the existence of the homomorphism (f, g), by

Corollary 3.4, we get the existence of a basic sequence (wi) in I such that, for

i0 < · · · < il and a0, . . . , al ∈ M , the color of a0(wi0) · · · al(wil) depends only on

a0(•) ∨ · · · ∨ al(•) as long as ak(•) ∨ · · · ∨ al(•) ∈ F ′, for each 0 ≤ k ≤ l. Since

this last condition is implied by a0(•) ∨ · · · ∨ al(•) ∈ F and since for each a ∈ M ,

a(•) = a(y), we are done. �

We also have the following result analogous to Corollary 4.3 for the monoid

J(∅, B), as defined in Section 2.3, that follows from Corollary 3.4 and Corol-

lary 4.1(ii).

Corollary 4.4. Consider the monoid J(∅, B) for a finite set B. Let Xn, n ∈ N be

pointed J(∅, B)-sets, and let E be a right ideal such that 〈(Xn)〉 is E-directed. For

each finite coloring of 〈(Xn)〉, there exist a basic double sequence (vi, v
′
i) in 〈(Xn)〉,

with x occurring in each vi and with v′i ∈ E for each i, such that the coloring is

fixed on sequences of the form

(4.3) b0(vi0)b′0(v′j0)b1(vi1)b′1(v′j1) · · · bn(vin)

for b0, b
′
0, b1, b

′
1, . . . , bn ∈ B and i0 ≤ j0 < i1 ≤ j1 < · · · < in.
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Proof. We start with analyzing X(M), Y(M), and 〈Y(M)〉. The partial order X(M)

consists of two elements: the R-class of 1M , which we again denote by 1M , and the

common R-class of all b ∈ B, which we denote by b. Clearly b ≤X(M) 1M . Thus,

Y(M) has a unique maximal element {b, 1M}, which we denote by y. Note that

for each b ∈ B
b(y) = {b}.

Two important to us conclusions follow from this equality. First, computing in

〈Y(M)〉, for b0, . . . , bn ∈ B, we get

(4.4) b0(y) ∨ · · · ∨ bn(y) = {b},

that is, the product b0(y) ∨ · · · ∨ bn(y) does not depend on b0, . . . , bn. Second, in

the point based function array 〈Y(M)〉y over M , for b0, b1 ∈ B, we have

(4.5) b0(•) = b0(y) = b1(y) = b1(•),

that is, all elements of B are conjugate to each other (with the notion of conjugate

as in Corollary 3.5).

Let I be the subset of 〈(Xn)〉 consisting of all words that contain a distinguished

element of some Xn. The set I is a two-sided ideal and that 〈(Xn)〉 is I-directed.

By Corollary 4.1(ii), there exists a homomorphism

(f, g) : 〈Y(M)〉y → γ(〈(Xn(B))〉(α))

and an ultrafilter V ∈ γ(〈(Xn(B))〉) such that

I ∈ f(•), E ∈ V and f(•) ∗ V = f(•).

Let F consist of one point {b} ∈ 〈Y(M)〉. So F is a finite subset of 〈Y(M)〉.
Given a finite coloring of 〈Y(M)〉, Corollary 3.5 and the existence of the homomor-

phism (f, g) above imply that there exists a basic sequence (vi, v
′
i) in 〈(Xn(B))〉

with v′i ∈ E that is conjugate F -〈Y(M)〉-tame. In view of the definition of F , (4.4),

and (4.5) the coloring is fixed on sequences of the form (4.3). �

Let (Xn) be a sequence of pointed M -sets for a finite monoid M . We say that

(Xn) has the Ramsey property if for each finite coloring of 〈(Xn)〉 there exists a

basic sequence (wi) in 〈(Xn)〉 such that

— each wi contains the distinguished element of Xn as an entry;

— all words of the form

a0(wi0) · · · al(wil),

where l ∈ N, ai ∈ M with at least one ai = 1M , are assigned the same

color.

A monoid M is called Ramsey if each sequence of pointed M -sets has the

Ramsey property.

We deduce from Corollary 4.3 the following result characterizing Ramsey monoids.

Corollary 4.5. (i) If M is almost R-trivial and the partial order X(M) is

linear, then M is Ramsey.
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(ii) If X(M) is not linear, then the sequence of pointed M -sets Xn = X(M), with

the canonical action of M and with the R-class of 1M as the distinguished

point, does not have the Ramsey property.

Thus, if M is almost R-trivial, then M is Ramsey if and only if the partial order

X(M) is linear.

Proof. (i) Fix a sequence of pointed M -sets (Xn). We need to show that it has

the Ramsey property. One checks easily that linearity of X(M) implies that there

exists an order preserving M -equivariant embedding of X(M) to Y(M) mapping

the top element of X(M) to a maximal element of Y(M)—map the R-class of a to

the set of all predecessors of the class of a in X(M). We identify X(M) with its

image in Y(M). Note that, by linearity of X(M), X(M) = 〈X(M)〉, so X(M) is a

subsemigroup of 〈Y(M)〉. Let y0 be the top element of X(M), which is the R-class

of [1M ]. Since [a] ∨ [1M ] = [1M ] ∨ [a] = [1M ], for the R-class [a] of each a ∈ M , it

follows immediately from Corollary 4.3 that (Xn) has the Ramsey property. Since

(Xn) was arbitrary, we get the conclusion of (i).

(ii) Let Xn, n ∈ N, be the pointed M -sets described in the statement of (ii). Let

a, b ∈ M be two elements whose R-classes [a] and [b] are incomparable in X(M).

Then a 6∈ bM and b 6∈ aM , which implies that

(4.6) [a] 6∈ bX(M) and [b] 6∈ aX(M).

We color w ∈ 〈(Xn)〉 with color 0 if [a] occurs in w and its first occurrence precedes

all the occurrences of [b], if there are any. Otherwise, we color w with color 1. Let

(wi) be a basic sequence in 〈(Xn)〉 with the R-class [1M ] of 1M occurring in each

wi. Then, in a(w0)w1, [a] occurs in a(w0) and, by (4.6), [b] does not occur in a(w0).

It follows that a(w0)w1 is assigned color 0. For similar reasons, b(w0)w1 is assigned

color 1. Thus, the Ramsey property fails for (Xn). �

Using the characterization from Corollary 4.5, a more concrete characterization

of Ramsey monoids among almost R-trivial monoids was recently given in [8]. It

turns out that almost R-trivial monoids are rarely Ramsey. Note, however, that,

by Corollary 4.3, one obtains Ramsey theorems even from non-Ramsey monoids;

see the Furstenberg–Katznelson theorem in Section 4.3.

4.3. Some concrete applications. We will present detailed arguments for show-

ing that

(1) the Furstenberg–Katzenlson theorem for located words and

(2) the Hales–Jewett theorem for located left variable words

follow from combining Corollaries 3.4 and 3.5 with Corollary 4.1, in case of (1)

through Corollary 4.3. We also indicate how (3) Gowers’ theorem and (4) Lupini’s

theorem are special cases of Corollary 4.3. We provide more details in the case (1)

and (2) since (1) appears to be new and the derivation of (2) appears to be the

most subtle one involving an application of Corollary 3.5. We emphasize however

that all these derivations essentially amount to translations and specifications of

our general results.
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1. Furstenberg–Katznelson’s theorem for located words. We state here

the Furstenberg–Katznelson theorem for located words. The original version from

[3] is stated in terms of words and, as explained in the beginning of Section 4.2, is

implied by our statement. We refer the reader to [3] for the original version. What

follows in this point is, in essence, a translation of a particular case of Corollary 4.3

to the language used to state the Furstenberg–Katznelson theorem.

We fix an element x, called a variable. For a set C with x 6∈ C, let

(4.7) Xn(C) = {n} × (C ∪ {x}).

Fix now two finite disjoint sets A,B with x 6∈ A ∪ B. If w ∈ 〈(Xn(A ∪ B))〉, x
occurs in w, and c ∈ A ∪B ∪ {x}, then

(4.8) w[c]

is an element of 〈Xn(A ∪ B)〉 obtained from w by replacing each occurrence of x

by c.

A reduced string in A is a sequence a0 · · · ak, possibly empty, such that ai 6=
ai+1 for all i < k. With a sequence c0 · · · ck with entries in A ∪ B, we associate a

reduced string c0 · · · ck in A as follows. We delete all entries coming from B thereby

forming a sequence c′0 · · · c′k′ for some k′ ≤ k. In this sequence, we replace each run

of each element of A by a single occurrence of that element forming a sequence

c′′0 · · · c′′k′′ with k′′ ≤ k′. This sequence is c0 · · · ck.

Here is the statement of the Furstenberg–Katznelson theorem for located words.

Let F be a finite set of reduced strings in A. Color 〈Xn(A∪B)〉 with finitely many

colors. There exists a basic sequence (wi) in 〈Xn(B)〉 such that x occurs in each

wi and, for each n0 < · · · < nk and c0, . . . , ck ∈ A ∪B, the color of

wn0
[c0] · · ·wnk

[ck]

depends only on c0 · · · ck provided c0 · · · ck ∈ F .

This theorem is obtained by considering the monoid J(A,B) from Section 2.3.

For brevity’s sake, set

M = J(A,B).

Forgetting about the Ramsey statement for a moment, we make some computations

in Y(M).

Observe that all elements of B are in the same R-class, which we denote by b,

the R-class of each element of A consists only of this element only, and the R-class

of 1M consists only of 1M . So, with some abuse of notation, we can write

X(M) = {b, 1M} ∪A.

We have that, for each a ∈ A,

b ≤X(M) a ≤X(M) 1M

and elements of A are incomparable with each other with respect to ≤X(M). The

action of M on X(M) is induced by the action of M on itself by left multiplication.

Pick a0 ∈ A. Note that the sets

{b}, {b, a}, for a ∈ A, and {b, a0, 1M}
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are in Y(M), and we write b, a, 10 for these elements, respectively. We notice that

(4.9) b ≤Y(M) a, for all a ∈ A, and b, a0 ≤Y(M) 10,

and ≤Y(M) does not relate any other two of the above elements. Furthermore, 10

is a maximal element of Y(M). The action of M on these elements is induced by

the left multiplication action of M on itself, so

a(10) = a and b(10) = b, for a ∈ A, b ∈ B.

Using relations (4.9), we observe that, for c0, . . . , ck ∈ {b} ∪A, the product

c0 ∨ · · · ∨ ck

in the semigroup of 〈Y(M)〉 is equal to b if ci = b, for each i ≤ k, or is obtained

from c0 ∨ · · · ∨ ck by removing all occurrences of b and shortening a run of each

a ∈ A to one occurrence of a, if ci ∈ A, for some i ≤ k. Thus, the map assigning to

a sequence c0 · · · ck of elements of A ∪B the element c0 ∨ · · · ∨ ck of Y(M) factors

through the map c0 · · · ck → c0 · · · ck giving an injective map c0 · · · ck → c0∨· · ·∨ck.

We note that M acts on Xn(A ∪B) as follows. We identify Xn(A ∪B) with M

by identifying (n, x) with 1M and (n, c) with c for c ∈ A ∪ B. Since M acts on M

by left multiplication, this identification gives an action of M on Xn(A ∪ B). We

make (n, x) the distinguished element, thereby turning Xn(A ∪ B) into a pointed

M -set.

We apply Corollary 4.3 to this sequence of pointed M -sets. In the statement of

the theorem, we take y = 10 and, for the finite subset 〈Y(M)〉, we take

{c0 ∨ · · · ∨ ck : c0 · · · ck ∈ F}.

Now, an application of Corollary 4.3 gives a basic sequence (w′i) in 〈(Xn(A∪B))〉.
Let wi ∈ 〈Xn(B)〉 be gotten from w′i by replacing each value taken in A by x. By

the discussion above, the sequence (wi) is as required.

2. The Hales–Jewett theorem for left-variable words. The Hales–Jewett

theorem for located words is just the Furstenberg–Katznelson theorem for located

words with A = ∅. We state now and prove the Hales–Jewett theorem for located

left-variable words as in [16, Theorem 2.37]. We use the notation as in (4.7) and

(4.8). We call w ∈ 〈(Xn(C))〉 left-variable if the first entry in the sequence w is

of the form (n, x) for some n ∈ N.

Let B be a finite set. For each finite coloring of 〈(Xn(B))〉, there exists a basic

sequence (wi) in 〈(Xn(B))〉 such that x does not occur in w0, each wi with i ≥ 1 is

left-variable, and the color of the sequences

(4.10) w0wn0
[b0] · · ·wnk

[bk],

with 0 < n0 < · · · < nk and b0, . . . , bk ∈ B, is fixed.

We will use the monoid M = J(∅, B) and apply Corollary 4.4. Note that M =

B∪{1M} is in a bijective correspondence with Xn(B) mapping each b ∈ B to (n, b)

and 1M to (n, x). We transfer the left multiplication action of M to Xn(B) and

make (n, x) the distinguished element of Xn(B). Thus, Xn(B) is a pointed M -set.

We consider the semigroup 〈(Xn(B))〉 with the induced endomorphism action of
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M . Let E ⊆ 〈(Xn(B))〉 consist of all left-variable elements. Note that E is a

right ideal in 〈(Xn(B))〉 and 〈(Xn(B))〉 is E-directed. Now Corollary 4.4 produces

a basic double sequence (vi, v
′
i) in 〈(Xn)〉, with x occurring in each vi and with

v′i ∈ E for each i. Fix b ∈ B, and let

w0 = v0[b] and wi = v′i−1vi for i ≥ 1.

Clearly x does not occur in w0 and each wi is left-variable for i ≥ 1. The coloring

is fixed on sequences of the form (4.10) since it is fixed on ones of the form (4.3).

3. Gowers’ theorem. The monoid Gk is defined in Section 2.3. Gowers’ Ram-

sey theorem from [4], see [16, Theorem 2.22], is obtained by applying Corollary 4.3

to Xn = Gk with the left multiplication action and with the distinguished element

1Gk
. We note that X(Gk) is linear, and we apply Corollary 4.3 as in the proof of

Corollary 4.5(i).

4. Lupini’s theorem. Lupini’s Ramsey theorem from [10] is an infinitary

version of a Ramsey theorem found by Bartošova and Kwiatkowska in [1]. To prove

it we consider the monoid Ik defined in Section 2.3. We take for Xn = {0, . . . , k−1}
with the natural action of Ik and the distinguished element k − 1. The result is

obtained by applying Lemma 2.5 and Theorem 3.1. We expand on this theme in

Section 4.4.

4.4. The monoids In. We analyze here the monoids In, n ∈ N, n > 0, defined in

Section 2.3. As usual, we identify a natural number n with the set {0, . . . , n− 1}.
The monoid In is the monoid of all functions f : n → n such that f(0) = 0 and

f(i−1) ≤ f(i) ≤ f(i−1)+1, for all 0 < i < n, taken with composition. We consider

these monoids, on the one hand, to illustrate our notion of Ramsey monoids and,

on the other hand, to answer a question of Lupini from [10]. We will prove the

following theorem.

Theorem 4.6. The monoids In, for n ≥ 4, are not Ramsey. The monoids I1, I2,

and I3 are Ramsey.

We now state a theorem and question of Lupini [10] in our terminology. For

k ∈ N, let wk be a finite word in the alphabet n = {0, 1, . . . , n − 1} that contains

an occurrence n− 1. Let In(wk) be equal to the set {f(wk) : f ∈ In}, where f(wk)

is the word obtained from wk by applying f letter by letter. We take In(wk) with

the natural action of In and with wk as the distinguished element. Note that if wk
is the word of length one whose unique letter is n − 1, then In(wk) = n with the

natural action of In on n.

Theorem (Lupini [10]). Let n > 0, and let wk = (n − 1). Then the sequence of

pointed In-sets (In(wk))k has the Ramsey property.

In [10], Lupini asked the following natural question: does (In(wk))k have the

Ramsey property for every choice of words wk, k ∈ N?

The following corollary to Theorem 4.6 answers this question in the negative.

Corollary 4.7. Let n ≥ 4. For k ∈ N, let wk = (01 · · · (n−1)). Then the sequence

of pointed In-sets (In(wk))k does not have the Ramsey property.
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Proof. By Theorem 4.6, In is not Ramsey for n ≥ 4. It follows, by Corollary 4.5 and

by R-trivialiity of In, that the sequence Xk = In, k ∈ N, does not have the Ramsey

property, where In is considered as a pointed In-set with the left multiplication

action and with 1 as the distinguished element. Note that In is isomorphic as a

pointed In-set with In(01 · · · (n− 1)) as witnessed by the function

In 3 f → f(01 · · · (n− 1)) ∈ In(01 · · · (n− 1)).

Thus, since wk = 01 · · · (n− 1), the sequence (In(wk))k does not have the Ramsey

property. �

We will give a recursive presentation of the monoid In that may be of some

independent interest and usefulness for future applications. It will certainly make

it easier for us to manipulate symbolically elements of In below. In the recursion,

we will start with a trivial monoid and adjoin a tetris operation as in [4] at each

step of the recursion.

First, we present a general extension operation that can be applied to certain

monoids equipped with an endomorphism and a distinguished element. Let M be

a monoid, let f : M →M be an endomorphism, and let t ∈M be such that for all

s ∈M we have

(4.11) st = tf(s).

Define

µ(M, t, f)

to be the triple

(N, τ, φ),

where N is a monoid, τ is an element of N , and φ is an endomorphism of N that

are obtained by the following procedure. Let N be the disjoint union of M and the

set {τs : s ∈ M}, where τ is a new element and the expression τs stands for the

ordered pair (τ, s). For s ∈M , we write τ0s for s and τ1s for τs. Define a function

φ : N →M ⊆ N by letting, for s ∈M and e = 0, 1,

φ(τes) = tef(s),

where tef(s) is a product computed in M . Define multiplication on N be letting,

for s1, s2 ∈M , and e1, e2 = 0, 1,

(τe1s1) · (τe2s2) =

{
τe1(s1s2), if e2 = 0;

τ(φ(τe1s1)s2), if e2 = 1.

where, on the right hand side, s1s2 and φ(τe1s1)s2 are products computed in M .

We write τ for τ1M . Note that s1 · s2 = s1s2 for s1, s2 ∈ M , τ · s = τs for s ∈ M
and τ · τ = τt. We will omit writing · for multiplication in N .

The following lemma is proved by a straightforward computation.

Lemma 4.8. N is a monoid, φ is an endomorphism of N , and, for all σ ∈ N , we

have relation (4.11), that is,

στ = τφ(σ).
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Later, we will need the following technical lemma.

Lemma 4.9. For σ ∈ N and s ∈M , there exists s′ ∈M such that τsσ = τss′.

Proof. If σ ∈ M , then we can let s′ = σ. Otherwise, σ = τs0 for some s0 ∈ M .

Note that

τsσ = τsτs0 = ττf(s)s0 = τtf(s)s0 = τsts0,

and we can let s′ = ts0. �

By recursion, we define a sequence of monoids with distinguished elements and

endomorphisms. Let M1 be the unique one element monoid, let t1 be its unique

element, and let f1 be its unique endomorphism. Assume we are given a monoid

Mk for some k ≥ 1 with an endomorphism fk of Mk and an element tk with (4.11).

Define

(Mk+1, tk+1, fk+1) = µ(Mk, tk, fk).

Proposition 4.10. For each k ∈ N, k > 0, Mk is isomorphic to Ik.

Proof. One views Ik−1 as a submonoid of Ik, for k > 1, identifying Ik−1 with its

image under the isomorphic embedding Ik−1 3 s→ s′ ∈ Ik, where

s′(i) =

{
0, if i = 0;

s(i− 1) + 1, if 0 < i < k.

One checks that tk ∈ Ik given by

tk(i) =

{
0, if i = 0;

i− 1, if 0 < i < k.

and fk : Ik → Ik given by

fk(s)(i) =

{
0, if i = 0;

s(i− 1) + 1, if 0 < i < k.

fulfill the recursive definition of (Mk, tk, fk). �

Since, as proved in Section 2.3, In is R-trivial, the partial order X(In) can be

identified with In. We will make this identification and write ≤In for ≤X(In). We

have the following recursive formula for ≤In . Obviously, ≤I1 is the unique partial

order on the one element monoid.

Proposition 4.11. Let te1n+1s1, t
e2
n+1s2 ∈ In+1 with s1, s2 ∈ In and e1, e2 = 0, 1.

Then te1n+1s1 ≤In+1
te2n+1s2 if and only if

e2 ≤ e1 and s1 ≤In fe1−e2n (s2).

Proof. By Proposition 4.10, we regard (In+1, tn+1, fn+1) as obtained from the triple

(In, tn, fn) via operation µ. In particular, we regard In as a submonoid of In+1.

We also have fn+1(s) = fn(s), for s ∈ In.
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(⇐) If e0 = e1, the implication is obvious. The remaining case is e2 = 0 and

e1 = 1. In this case, we have s1 ≤In fn(s2), that is, s1 = fn(s2)s′ for some s′ ∈ In.

But then

tn+1s1 = tn+1fn(s2)s′ = s2(tn+1s
′),

and tn+1s1 ≤In+1
s2 as required.

(⇒) Note that it is impossible to have s1 ≤In+1
tn+1s2 for s1, s2 ∈ In. Indeed,

this inequality would give s1 = tn+1s2σ for some σ ∈ In+1, which would imply,

by Lemma 4.9, that s1 = tn+1s2s
′ for some s′ ∈ In. This is a contradiction since

s2s
′ ∈ In. Thus, te1n+1s1 ≤In+1

te2n+1s2 implies e2 ≤ e1.

If e1 = e2 = 0, then we have s1 ≤In+1
s2, which means s1 = s2σ for some

σ ∈ In+1. If σ ∈ In, then s1 ≤In s2, as required. Otherwise, σ = τs′ for some

s′ ∈ In, which gives

s1 = s2τs
′ = τ(fn(s2)s′),

which is impossible since fn(s2)s′ ∈ In.

If e1 = e2 = 1, then we have tn+1s1 ≤In+1 tn+1s2, which means tn+1s1 = tn+1s2σ

for some σ ∈ In+1. By Lemma 4.9, this equality implies tn+1s1 = tn+1(s2s
′) for

some s′ ∈ In. Since s2s
′ ∈ In, this equality gives s1 = s2s

′, so s1 ≤In s2.

The last case to consider is e1 = 1 and e2 = 0, that is, tn+1s1 ≤In+1
s2. Then

tn+1s1 = s2σ for some σ ∈ In+1. Note that σ 6∈ In, so σ = tn+1s
′ for some s′ ∈ In.

But then we have

tn+1s1 = s2tn+1s
′ = tn+1fn(s2)s′,

which implies s1 = fn(s2)s′, that is, s1 ≤In fn(s2). �

Proof of Theorem 4.6. It is easy to see from Proposition 4.11 that the orders ≤I1 ,

≤I2 , ≤I3 are linear. So, by Corollary 4.5, I1, I2, and I3 are Ramsey.

By Corollary 4.5, it remains to check that the partial order (In,≤In) is not

linear for n ≥ 4. By Proposition 4.10, we regard (In+1, tn+1, fn+1) as obtained

from the triple (In, tn, fn) via operation µ. It follows from Proposition 4.11 that

≤In+1 restricted to In is equal to ≤In . Thus, it suffices to show that (I4,≤I4) is

not linear. Note that the image of f3 is equal I2 and I2 has two elements. So there

exists s0 ∈ I3 such that f3(s0) 6= 1I2 . Thus, since 1I2 = 1I3 , we get f3(s0) <I3 1I3 .

It then follows from Proposition 4.11 that t4 and s0 are not comparable with respect

to ≤I4 . Indeed,

t4 = t141I3 and s0 = t04s0.

Since 0 < 1, we have s0 6≤I4 t4; since 1I3 6≤I3 f1−0
3 (s0), we have t4 6≤I4 s0. �

The monoid I4 is the first one among the monoids In, n > 0, that is not Ramsey.

Using Propositions 4.10 and 4.11, one can compute ≤I4 as follows. Since I3 is

linearly ordered, one can list the four elements of I3 as a3 ≤I3 a2 ≤I3 a1 ≤I3 1.

Then I4 is equal to the disjoint union I3 ∪ t4I3 and the order ≤4 is the transitive
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closure of the relations

a3 ≤I4 a2 ≤I4 a1 ≤I4 1;

t4a3 ≤I4 t4a2 ≤I4 t4a1 ≤I4 t4;

t4 ≤I4 a1;

t4a1 ≤I4 a3.

One can check by inspection that M1 = I4 \ {t4} and M2 = I4 \ {a2, a3} are

submonoids of I4. They are R-trivial as submonoids of an R-trivial monoid [14].

One easily checks directly that ≤M1 and ≤M2 are linear, therefore, M1 and M2 are

Ramsey by Corollary 4.5. Thus, I4 is not itself Ramsey, but it is the union of two

Ramsey monoids.
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