
POLISH MODULES OVER SUBRINGS OF Q

DEXUAN HU AND S LAWOMIR SOLECKI

Abstract. We give a method of producing a Polish module over an arbitrary

subring of Q from an ideal of subsets of N and a sequence in N. The method

allows us to construct two Polish Q-vector spaces, U and V , such that

— both U and V embed into R but

— U does not embed into V and V does not embed into U ,

where by an embedding we understand a continuous Q-linear injection. This

construction answers a question of Frisch and Shinko [4]. In fact, our method

produces a large number of incomparable with respect to embeddings Polish

Q-vector spaces.

1. Introduction

1.1. The background for and outline of the main results. This is a paper

on a connection between Descriptive Set Theory and Commutative Algebra. In [4],

Frisch and Shinko initiated the study of Polish modules and embeddings among

them. The present work answers a question from that paper [4, Problem 4.4] by

producing incomparable with respect to embeddings Polish R-modules for subrings

R of Q. In fact, we give a rather general method of constructing Polish R-modules

for such R. This construction associates Polish R-modules with certain ideals of

subsets of N (translation invariant analytic P-ideals) and certain sequences in N
(base sequences) under the assumption of a suitable coherence between the ideals

and the sequences. The procedure appears to be quite canonical and may have

other applications.

Before explaining the context of the question from [4] and our construction,

which will require some definitions, we formulate a statement that is a special case

of Corollary 1.2. The statement does not require any extra definitions as it can be

phrased entirely in the language of vector spaces over Q and the Borel structure of

R; on the other hand, it is a representative consequence of our main results. We

treat the real numbers R as a Q-vector space.

There exists a family Fx, for x ⊆ N, of uncountable Borel Q-vector subspaces of R
such that, for all x, y ⊆ N,

— if x \ y is finite, then Fx ⊆ Fy and

— if x \ y is infinite, then each Borel Q-linear map Fx → Fy is constantly

equal to zero.
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Each Fx, for x ⊆ N, can be taken to be a countable union of closed subsets of R.

Now, we recall the notion of Polish module from [4]. Actually, we recall only the

special case of the definition (when the ring is commutative and countable) that is

relevant to stating the problem from [4]. Let R be a commutative countable ring

(with unity 1). By a Polish R-moduleM we understand an abelian Polish group,

where + denotes the group operation, and a continuous function

R×M 3 (r,m)→ r ·m ∈M,

with R equipped with the discrete topology, such that

r · (m1 +m2) = r ·m1 + r ·m2, (r1 + r2) ·m = r1 ·m+ r2 ·m,
r1 · (r2 ·m) = (r1r2) ·m, 1 ·m = m,

for all r, r1, r2 ∈ R and m,m1,m2 ∈ M . Of course, if R is a countable field, then

an R-module is a vector space over R. For the record, we also recall the notion of

homomorphism and embedding among R-modules. If M1 and M2 are R-modules,

a function f : M1 → M2 is called an R-module homomorphism if it is a group

homomorphism and f(rm) = rf(m) for all r ∈ R and m ∈ M1. An injective R-

module homomorphism is called an R-embedding. We use the suggestive notation

from [4]

M1 vR M2

to indicate that there is a continuous R-embedding M1 →M2; and also

M1 @
R M2

if M1 vR M2 and M2 6vR M1.

It was proved in [4, Theorem 1.2 and Section 3] that

if R is a countable Noetherian ring, then there is a family of uncountable Polish

R-modules MS, parametrized by nontrivial quotients S of R, such that, for each

uncountable Polish R-module M , we have MS vR M for some S.

Recall that a commutative ring is Noetherian if each strictly increasing under

inclusion sequence of ideals is finite. The modules MS have an explicit definition,

but it will not be relevant here. The family of nontrivial quotients S of R is

countable; thus, the above statement asserts that the class of uncountable Polish

R-modules has a countable basis under R-embeddings. The situation is even more

striking when R is a countable field. A field R has only one non-trivial quotient,

namely, R itself, and is obviously Noetherian. So the above family of the MS-s has

only one element MR. Thus,

if R is a countable field, then there is an uncountable Polish R-vector space MR

such that, for each uncountable Polish R-vector space M , we have MR vR M .

So the class of uncountable Polish R-vector spaces has a one-element basis under

embedding.

A particularly interesting case is that of R = Q. In this case, there is a classical

uncountable Polish Q-vector space, namely, R. The above statement gives MQ vQ
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R. As it was pointed out in [4], there is no continuous Q-embedding from R to MQ,

so we have

MQ @
Q R.

Now, a natural question arises whether there exists a Polish Q-vector space V such

that

(1) MQ @
Q V @Q R.

This question was asked as [4, Problem 4.4]. We answer it in the affirmative by

proving the following theorem.

Theorem 1.1. Let R be a subring of Q not equal to Z. There exists a family Vx,

for x ⊆ N, of uncountable Polish R-modules such that, for all x, y ⊆ N, we have

(i) Vx vR R, ;

(ii) if x \ y is finite, then Vx vR Vy;

(iii) if x \ y is infinite, then each continuous R-module homomorphism Vx → Vy
is identically equal to zero; in particular, Vx 6vR Vy.

In fact, there exist continuous R-module embeddings fx : Vx → R witnessing

(i) so that (ii) is witnessed by a continuous R-module emdeding g : Vx → Vy with

fx = fy ◦ g. Further, the image of fx is a countable union of closed subsets of R.

To see clearly the relationship between Theorem 1.1 and [4, Problem 4.4], take

R = Q and note that if x ⊆ N is such that both x and N \ x are infinite, then Vx
as in Theorem 1.1 fulfills (1). Indeed, by Theorem 1.1(i) and the defining property

of MQ, we have

MQ vQ Vx vQ R.
Set y = N \ x. If R vQ Vx, then, by Theorem 1.1(i) for y and transitivity of vQ,

we would have Vy vQ Vx contradicting Theorem 1.1(iii). If Vx vQ MQ, then, by

definition ofMQ and transitivity ofvQ, we would have Vx vQ Vy again contradicting

Theorem 1.1(iii). It follows that (1) holds with V = Vx.

Note that one can prove the non-embedding statement R 6vQ Vx in (1) more

directly by noticing that R is connected, while Vx is totally disconnected, since its

image under the embedding into R is totally disconnected (as a nontrivial subspace

of R over Q). Thus, there is no non-constant continuous function from R to Vx. It

was pointed out to us by Josh Frisch that to get the other non-embedding statement

in (1) for Vx as above, one can also argue as follows. By the first part of the proof of

Lemma 3.4 below, there is an element of Vx, namely 1, whose Q multiples are dense

in Vx. On the other hand, from the definition of MQ, as given in [4], one proves

that MQ does not have an uncountable linear subspace over Q with this property.

This gives Vx 6vQ MQ.

As pointed out in Section 2.2, subrings of Q are Noetherian; therefore, the above

theorem fits into the context from [4] described above even for R not equal to Q.

We have a corollary of Theorem 1.1 that is phrased in terms of the Borel structure

of R only, and which generalizes the statement at the top of the introduction.

Corollary 1.2. Let R be a subring of Q not equal to Z. There exists a family Fx,

for x ⊆ N, of uncountable Borel R-submodules of R such that, for all x, y ⊆ N,
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(i) if x \ y is finite, then Fx ⊆ Fy and

(ii) if x \ y is infinite, then each Borel R-module homomorphism Fx → Fy is

constantly equal to zero.

Each Fx, for x ⊆ N, can be taken to be a countable union of closed sets.

Note that that the Borel complexity (countable unions of closed sets) in the

conclusion of Corollary 1.2 is clearly best possible.

Proof of Corollary 1.2 from Theorem 1.1. Let Vx and fx for x ⊆ N, be as in The-

orem 1.1. Let

Fx = fx(Vx).

Clearly Fx is an R-submodule of R. Directly from the properties of fx in The-

orem 1.1, Fx is Fσ and (i) holds. If x \ y is infinite and f : Fx → Fy is a Borel

R-module homomorphism, then (fy)−1◦f ◦fx is an R-module homomorphism from

Vx to Vy, which is Borel since the inverse of a Borel bijection is Borel. Thus, by

Pettis Theorem [5, Theorem 9.10], it is continuous, and so f is constantly equal to

0 by Theorem 1.1. �

The paper is structured as follows. Theorem 1.1 is a consequence of a general

method of constructing Polish modules over subrings of Q, which we present in

Section 2; see especially Theorem 2.13. Then, in Section 3, we prove a result,

Theorem 3.2, on strong non-containment, under appropriate conditions, of modules

produced using the method from Section 2. Finally, in Section 3.2, we apply the

results from Sections 2 and 3 to prove Theorem 1.1.

1.2. Conventions. By N we denote the set of all positive integers; so 0 6∈ N. The

power sets of N, P(N), is often regarded as a compact metric space via the canonical

identification with {0, 1}N = 2N. Further, R≥0 stands for the set of non-negative

real numbers. To keep notation lighter, for r, s ∈ R, set

(2) r 	 s = |r − s|.

Finally, a subset of a metric space is called

Fσ

if it is a countable union of closed sets.

2. A class of Polish modules

In this section, we present the main construction of the paper. It associates a

Polish module with two inputs: an ideal (of a certain type) of subsets of N and a

base sequence adapted to the ideal. These two main objects in the construction—

ideals of subsets of N and base sequences—are defined in Section 2.1. After some

preliminary work in Sections 2.2 and 2.3, we define the Polish modules and prove

their basic properties in Section 2.4.

Our construction extends the one in [8, Section 3], where Polishable subgroups

of R were associated with certain ideals of subsets of N.
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2.1. Base sequences and ideals of sets of natural numbers. A sequence

#»a = (an)

is called a base sequence if an ∈ N and an ≥ 2, for each n ∈ N. A non-empty

family I of subsets of N is called an ideal if it is closed under taking finite unions

and subsets. Additionally, in this paper, we will always assume that {n} ∈ I for

each n ∈ N. The two types of objects are related to each other through the following

notion. A base sequence #»a is called adapted to I if

{n | an 6= an+1} ∈ I.

2.2. Base sequences. Base sequences are useful to us for two reasons—each such

sequence gives a representation of real numbers and it determines a subring of Q.

2.2.1. Representations of non-negative reals. Given a base sequence #»a , each r ∈
R≥0 has a unique representation as

(3) r = [r] +

∞∑
n=1

rn
a1 · · · an

,

where [r] is the integer part of r and rn is such that 0 ≤ rn < an and rn 6= an−1 for

infinitely many n. We leave checking the above assertion to the reader. Obviously,

this is analogous to representing r using its decimal expansion. One can extend the

representation (3) to negative reals, but we will not need this extention in what

follows. For r ∈ R≥0 and n ∈ N, rn will stand for the n-th digit of r in the

representation of r as in (3).

Fix a base sequence #»a .

Lemma 2.1. Let r, s ∈ R≥0.

(i) If 0 ≤ r < 1
a1a2···al , then ri = 0 for all i ≤ l.

(ii) If 0 ≤ s− r < 1
a1a2···al and (rl 6= al−1 or sl 6= 0), then si = ri for all i < l.

Proof. (i) is immediate. To see point (ii), note that, by (i), (s−r)i = 0 for all i ≤ l.
By a straightforward calculation, this condition, in conjunction with rl 6= al − 1 or

sl 6= 0, implies that si = ri for all i < l. �

The next lemma on the continuity of the digits of a number is essentially a

qualitative version of Lemma 2.1(ii).

Lemma 2.2. Let
(
r(k)

)
k∈N, be a sequence in R≥0 converging to r ∈ R≥0. If either

one of the following two conditions holds

(i) r has infinitely many non-zero digits,

(ii) r(k) ≥ r for all k,

then, for each n ∈ N, r(k)n = rn for large enough k.

Proof. Under assumption (ii), for each l with rl 6= al−1, Lemma 2.1(ii) implies that,

for large enough k, we have r(k)i = ri for all i < l. Since there are infinitely many

such l, the conclusion follows. Now, assume (i). By what we just proved, we can

suppose that r(k) < r for all k. Now, for each l with rl 6= 0, Lemma 2.1(ii) implies
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that, for large enough k, we have r(k)i = ri for all i < l. Since, by assumption (i),

there are infinitely many such l, the conclusion follows. �

For r ∈ R≥0 with the representation (3), we let

(4) j #»a (r) = {n ∈ N | rn 6= rn+1},

so j #»a : R≥0 → 2N. Lemma 2.2 has an immediate corollary concering continuity

properties of j #»a .

Lemma 2.3. Let
(
r(k)

)
k∈N be a sequence in R≥0 converging to r ∈ R≥0. If either

one of the following two conditions holds

(i) r has infinitely many non-zero digits,

(ii) r(k) ≥ r for all k,

then j #»a (r(k))→ j #»a (r) as k →∞.

The next lemma describes how the function j #»a interacts with the algebraic

operations of addition and subtraction. Recall 	 from (2).

Lemma 2.4. For r, s ∈ R≥0, j #»a (r + s) and j #»a (r 	 s) are subsets of the union of

the following three sets

j #»a (r) ∪ j #»a (s),

{n | n+ 1 ∈ j #»a (r) ∪ j #»a (s)},
{n | an 6= an+1} ∪ {n | an+1 6= an+2}.

(5)

Proof. Suppose n is not in any of the sets in (5), that is, rn = rn+1 = rn+2,

sn = sn+1 = sn+2 and an = an+1 = an+2. By a direct computation of the digits of

r + s and r 	 s using the digits of r and s, we see that (r + s)n = (r + s)n+1 and

(r 	 s)n = (r 	 s)n+1, so n /∈ j #»a (r + s) and n /∈ j #»a (r 	 s). �

2.2.2. Subrings of Q. Given a base sequence #»a , we define a subring Q #»a of Q. First,

however, we make general comments on subrings of Q. For an arbitrary set P of

primes, define

P−1Z = {k
l
| k ∈ Z, l ∈ N, and, for each prime p, if p | l, then p ∈ P}.

Note that P−1Z is a subring of Q. The following lemma is surely well known. We

give an argument justifying it for the convenience of the reader.

Lemma 2.5. Each subring of Q is of the form P−1Z, for a suitable set P of primes.

Proof. Let R be a subring of Q. It suffices to show that if m ∈ Z and n ∈ N are

relatively prime, m/n ∈ R, and a prime p divides n, then 1/p ∈ R. To see this, note

that n/p is in N, and, by adding m/n to itself n/p many times, we get m/p ∈ R.

Since p - m, there are a, b ∈ Z such that 1 = ap+ bm. So we have

1

p
=
ap+ bm

p
= a+ b

m

p
,

from which we get 1/p ∈ R, as required. �
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Note that if we take P = ∅ in the lemma above, then P−1Z = Z; if P is the set

of all primes, then P−1Z = Q. Furthermore, each subring of Q is Noetherian as

each ideal in P−1Z is of the form

n ·
(
P−1Z

)
,

where n = 0 or n is a positive integer such that p - n for each p ∈ P ; see [1,

Proposition 3.11]. (We thank Patrick Allen for this reference.)

For a base sequence #»a , let

pr( #»a ) = {p | p a prime and p | an for all but finitely many n}.

Define

Q #»a =
(
pr( #»a )−1

)
Z.

We have the following immediate consequence of Lemma 2.5.

Proposition 2.6. Each subring of Q is of the form Q #»a for some base sequence #»a .

2.3. Ideals of subsets of N. Two properties of ideals of subsets of N will be

important in the sequel: translation invariance and being an analytic P-ideal.

An ideal I is call translation invariant if, for each x ∈ I, we have

{n+ 1 | n ∈ x} ∈ I and {n | n+ 1 ∈ x} ∈ I.

Before we talk about analytic P-ideals, we need to introduce appropriate sub-

measures. By a lower semicontinuous (lsc) submeasure we understand a

lower semicontinuous function φ : 2N → [0,∞] such that φ(x) ≤ φ(y) if x ⊆ y

and φ(x ∪ y) ≤ φ(x) + φ(y) for all x, y. In this paper, we always assume that

0 < φ({n}) <∞ for each n ∈ N. With each lsc submeasure we associate an ideal

Exh(φ) = {x ⊆ N | φ(x \ {1, . . . , n})→ 0, as n→∞}.

An ideal I is an analytic P-ideal if it is analytic as a subsets of 2N and has

the following property: for each sequence (xn) of elements of I, there exists y ∈ I
such that xn \ y is finite for each n. By [7, Theorem 3.1], an ideal I is an analytic

P-ideal if and only if it is of the form

I = Exh(φ),

for some lsc submeasure φ.

We have the following lemma on basic properties of ideals of the form Exh(φ).

All of these properties have been noticed in the literature. We recall them here for

the reader’s convenience.

Lemma 2.7. Let φ be a lsc submeasure. Set I = Exh(φ).

(i) If ψ is a lsc submeasure with I = Exh(ψ), then, for each ε > 0, there exists

δ > 0 such that if x ⊆ N and φ(x) < δ, then ψ(x) < ε.

(ii) For each ε > 0, there exists δ > 0 such that if x, y ⊆ N and φ(x), φ(y) < δ,

then φ(x ∪ y) < ε.

(iii) If I is translation invariant, then, for each ε > 0, there exists δ > 0 such

that if x ⊆ N and φ(x) < δ, then

φ
(
{n ∈ N | n+ 1 ∈ x}

)
< ε and φ

(
{n+ 1 ∈ N | n ∈ x}

)
< ε.
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Proof. All three points are consequences of the following statements. For ∅ 6= xn ⊆
N, n ∈ N,

— if φ(xn)→ 0 as n→∞, then minn xn →∞ as n→∞;

— if
∑
n φ(xn) <∞, then

⋃
n xn ∈ I.

The first one of these statements follows from our assumption that φ({k}) > 0 for

each k ∈ N, while the second one is a consequence of semicontinuity of φ. �

2.4. The module associated with a base sequence and an ideal. Let #»a be

a base sequence, which we fix for the duration of this section. Recall the definition

(4) of j #»a , and set

j = j #»a .

We also fix an ideal I, to which the base sequence #»a is adapted. Define the following

subset of R

(6) H = {r | r ∈ R≥0 and j(r) ∈ I} ∪ {−r | r ∈ R≥0 and j(r) ∈ I}.

The set above will be the underlying subset of the Polish module we will define

below.

We can immediately point out a complexity estimate on the set H that will be

useful later on.

Lemma 2.8. If I is an Fσ ideal, then H is an Fσ subset of R.

Proof. Set

R∞ = {r ∈ R≥0 | r has infinitely many non-zero digits}.

Obviously, it will suffice to show that the set

j−1(I) = {r ∈ R≥0 | j(r) ∈ I}

is Fσ. Since I is an Fσ ideal, we have that

I =
⋃
n

Fn

with Fn ⊆ 2N closed. Let Hn be the closure in R≥0 of j−1(Fn). Directly from

Lemma 2.3(i), we get

Hn ∩ R∞ ⊆ j−1(Fn).

It follows from this inclusion that

j−1(I) ∩ R∞ =
(⋃
n

j−1(Fn)
)
∩ R∞ ⊆ (

⋃
n

Hn) ∩ R∞ ⊆
⋃
n

j−1(Fn) = j−1(I).

Thus, since R≥0 \ R∞ ⊆ j−1(I) (as j(r) is finite for each r ∈ R≥0 \ R∞), we have

j−1(I) =
(⋃
n

Hn

)
∪
(
R≥0 \ R∞

)
.

Since R≥0 \ R∞ is countable and each Hn is closed, we see that j−1(I) is Fσ. �
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2.4.1. Algebraic operations on H. In this section, we assume that the ideal I is

translation invariant.

Lemma 2.9. (i) H is a subgroup of R taken with addition +.

(ii) H is closed under the multiplication by elements of Q #»a .

Proof. Let

H≥0 = {r ∈ R | r ≥ 0 and j(r) ∈ I}.
(i) Recall the operation 	 from (2). It suffices to show that H≥0 is closed under

+ and 	, which follows from Lemma 2.4 since #»a is adapted to I and the ideal I is

translation invariant.

(ii) It is sufficient to show that for each p ∈ pr( #»a ) and r ∈ H≥0

(7)
1

p
r ∈ H≥0.

If 1
pr has finitely many non-zero digits, then j( 1

pr) is finite, so 1
pr ∈ H≥0. Thus, in

the remainder of this proof, we assume that 1
pr has infinitely many non-zero digits.

Let N ∈ N such that p | an for all n ≥ N . The existence of such N follows from

p belonging to pr( #»a ). Now, (7) will be a consequence of the inclusion

(8) j
(1

p
r
)
⊆ j(r) ∪ {n+ 1 | n ∈ j(r)} ∪ {n | an 6= an+1} ∪ {1, . . . , N},

since #»a is adapted to I, j(r) ∈ I, and I is translation invariant.

The proof of (8) is done by computing the digits of 1
pr from the digits of r. We

need two pieces of notation. Let

(9) [r]n = [r] +

n∑
k=1

rk
a1 · · · ak

,

and let r′n be the integer such that

0 ≤ r′n < p and r′n ≡ rn mod p.

Also, the following identity, that is easy to see, will be useful

(10)
rn

a1a2 · · · anp
=

[
rn
p

]
a1a2 · · · an

+

an+1

p r′n

a1a2 · · · an+1
.

To get the relevant digits of 1
pr, we first find certain digits of 1

p [r]n, for n ≥ N+1.

Observation (11) is verified by induction below:

for n ≥ N + 1, the n-th and n+ 1-st digits of 1
p [r]n are[rn

p

]
+
an
p
r′n−1 and

an+1

p
r′n, respectively,

and all the digits following them are 0.

(11)

Before we start proving (11), observe that a quick calculation shows

(12) 0 ≤
[rn
p

]
+
an
p
r′n−1 < an.

To obtain the base case n = N + 1 of (11), note that a1a2 · · · aN 1
p [r]N−1 is an

integer, which implies that for all n ≥ N + 1, the n-th digit of 1
p [r]N−1 is 0. By
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adding rN
a1a2···aNp to 1

p [r]N−1 and using (10) with n = N , we see that 1
p [r]N has the

N+1-st digit aN+1

p r′N and all the digits after that are 0. Using (10) with n = N+1

to add rN+1

a1a2···aN+1p
to 1

p [r]N and remembering (12), we obtain the base case. The

inductive step is straightforward from the inductive hypothesis and (10).

From (11) and (10) we see that, for all n ≥ N + 1, adding rn+1

a1a2···an+1p
to 1

p [r]n
does not change the i-th digit for i ≤ n. Putting together this observation and

(11), we see that, for n ≥ N + 1, the n-th digit of 1
p [r]k for k ≥ n is

(13)
[rn
p

]
+
an
p
r′n−1.

Since 1
pr is assumed to have infinitely many non-zero digits and 1

p [r]k → 1
pr as

k →∞, by Lemma 2.2(i), for each n, the n-th digit of 1
pr is equal to that of 1

p [r]k

for large k. In particular, for n ≥ N + 1, the n-th digit of 1
pr is given by (13). It

follows that for n ≥ N + 1 if rn−1 = rn = rn+1 and an = an+1, then the n-th digit

of 1
pr is the same as its n + 1-st digit; that is, if n − 1 /∈ j(r) and n /∈ j(r) and

an = an+1, then n /∈ j
(

1
pr
)
, and (8) follows. �

2.4.2. Topology on H. In this section, we assume that the ideal I is translation

invariant and an analytic P-ideal.

Our goal is to describe a topology on H. We will need the following general

lemma that is essentially due to Chittenden [2]. We derive it here from the basic

theory of uniformities, for which we refer the reader to [3, Section 8.1].

Lemma 2.10. Let X be a set and ρ : X ×X → R a function such that

(i) for all x, y ∈ X, ρ(x, y) ≥ 0, and ρ(x, y) = 0 if and only if x = y;

(ii) for all x, y ∈ X, ρ(x, y) = ρ(y, x);

(iii) for each ε > 0, there exists δ > 0 such that, for all x, y, z ∈ X, if ρ(x, y) < δ

and ρ(y, z) < δ, then ρ(x, z) < ε.

Then there exists a metric d on X such that, for each ε > 0, there exists δ > 0 with(
ρ(x, y) < δ ⇒ d(x, y) < ε

)
and

(
d(x, y) < δ ⇒ ρ(x, y) < ε

)
, for all x, y ∈ X.

Proof. For A ⊆ X ×X, let

A−1 = {(y, x) | (x, y) ∈ A}.

Define

(14) Vε = {(x, y) ∈ X ×X | ρ(x, y) < ε}, for ε > 0.

The family U consisting of all subsets A of X ×X such that A = A−1 and A ⊇ Vε
for some ε > 0 is a uniformity on X. To show this, we need to see the following

three properties:

(i)
⋂
ε>0 Vε = {(x, y) ∈ X ×X | x = y};

(ii) V −1
ε = Vε;

(iii) for each ε > 0, there exists δ > 0 such that

{(x, z) | (x, y), (y, z) ∈ Vδ, for some y ∈ X} ⊆ Vε.
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These properties are immediate corollaries of the corresponding properties of ρ from

the assumptions of the lemma. By [3, Theorem 8.1.21], the uniformity U is given

by a metric d on X. The conclusion of the lemma follows from the definition of the

sets Vε. �

Since I is an analytic P-ideal, we have I = Exh(φ), for some lsc submeasure φ.

We fix such φ. Recall the operation 	 from (2), and define

ρ(r, s) = φ
(
j(r 	 s)

)
+ (r 	 s), for r, s ∈ R.

The next result gives a weak form of the triangle inequality for ρ as in Lemma 2.10(iii).

Lemma 2.11. For any ε > 0 there exists δ > 0 such that for any r, s, t in H,

ρ(r, s), ρ(s, t) < δ ⇒ ρ(r, t) < ε.

Proof. Fix ε > 0. Note that r 	 t is equal to one of the following

(r 	 s) + (s	 t), (r 	 s)	 (s	 t).

By Lemma 2.4, j(r 	 t) is included in the union of the following three sets

j(r 	 s) ∪ j(s	 t),
{n | n+ 1 ∈ j(r 	 s) ∪ j(s	 t)},
{n | an 6= an+1} ∪ {n | an+1 6= an+2}.

(15)

By Lemma 2.7(ii) and (iii), there is δ > 0 such that

(16) φ
(
j(r 	 s)

)
, φ
(
j(s	 t)

)
< δ ⇒ φ

(
{n | n+ 1 ∈ j(r 	 s) ∪ j(s	 t)}

)
< ε.

Moreover, since {n | an 6= an+1} ∪ {n | an+1 6= an+2} is in I, there is N large

enough such that

(17) φ
(
{n | an 6= an+1} ∪ {n | an+1 6= an+2} \ {1, . . . , N}

)
< ε.

For this N , by Lemma 2.1(i), there exits γ > 0 such that if 0 ≤ r < γ, then the

first N + 2 digits of r are all zeros. It follows that if r	 s, s	 t < γ, then the first

N + 2 digits of r	 s and s	 t are all zeros, therefore, r	 t has the first N + 1 digits

equal to zero. This implies that j(r 	 t) contains no elements from {1, . . . , N}.
Furthermore, from the definition of 	, we have

(18) r 	 s < ε, s	 t < ε⇒ r 	 t < 2ε.

Finally, let

δ′ = min{γ, δ, ε}.
Hence, by our choice of δ′, (16), (17), and (18), we get

ρ(r, s), ρ(s, t) < δ′ ⇒ ρ(r, t) < 6ε,

and the lemma follows. �

Lemma 2.12. There exists a metric d on H such that for each ε > 0, there exists

δ > 0 with(
ρ(r, s) < δ ⇒ d(r, s) < ε

)
and

(
d(r, s) < δ ⇒ ρ(r, s) < ε

)
, for all r, s ∈ H.
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Proof. It suffices to check that ρ fulfills properties (i)–(iii) from the assumption of

Lemma 2.10. It is clear that ρ has (i) and (ii); ρ satisfies (iii) by Lemma 2.11. �

Consider the topology induced on H by the metric d from Lemma 2.12. We call

this topology the submeasure topology. The definitions of ρ, d, and, therefore,

also the submeasure topology depend on φ with I = Exh(φ). Lemma 2.7(i) implies

that these objects depend only on I and not on the choice of φ.

2.4.3. The Polish module. Recall that we have a base sequence #»a and an ideal I

such that #»a is adapted to I. We assume now that I is a translation invariant

analytic P-ideal I. We are ready to define the Q #»a -module

I[ #»a ].

The underlying set of I[ #»a ] is H from (6). By Lemma 2.9, H with the operation

of + and multiplication by elements of Q #»a inherited from R is a Q #»a -module. We

topologize H with the submeasure topology.

Theorem 2.13. Let I be a translation invariant analytic P-ideal of subsets of N,

and let a base sequence #»a be adapted to I. Then I[ #»a ] is a Polish Q #»a -module and

the identity map I[ #»a ]→ R is a continuous Q #»a -embedding.

We isolate the following result as a lemma as we will use it twice.

Lemma 2.14. Let F be the collection of elements of R≥0 that have finitely many

non-zero digits. If I has an element that is an infinite subset of N, then F ∪−F is

dense in I[ #»a ] with the submeasure topology.

Proof. It suffices to show that F is dense in H≥0. For r ∈ H≥0, recall [r]n from (9).

Clearly [r]n is in F for every n. We verify that there is a subsequence of ([r]n)n∈N
that converges to r in the submeasure topology. If r is in F , we have [r]n = r for

all but finitely many n. If r is not in F , there are two cases.

When j(r) is finite, fix a sequence (ni) of natural numbers such that φ({ni})→ 0.

The existence of such a sequence follows from the assumption that an infinite subset

of N is in I. Since j(r − [r]ni
) = {ni} for all but finitely many i,

(19) φ
(
j(r − [r]ni

)
)
→ 0 as i→∞.

Now assume j(r) is infinite. Note that, for n ∈ j(r), j(r − [r]n) is equal to one

of the following two sets

j(r) \ {1, . . . , n− 1}, j(r) \ {1, . . . , n}

Thus, since j(r) ∈ Exh(φ), we get

(20) φ
(
j(r − [r]n)

)
→ 0 as j(r) 3 n→∞.

Furthermore, (r− [r]n)→ 0 in R as n→∞, so, in both cases, by (19) and (20),

we get a subsequence of ([r]n) that converges to r in terms of ρ, and this implies

convergence in the submeasure topology by Lemma 2.12. �
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Proof of Theorem 2.13. We need to see that the submeasure topology on I[ #»a ] is

Polish. If I is the ideal of all finite subsets of N, then I[ #»a ] is countable and

the submeasure topology is discrete, so I[ #»a ] is Polish. The first observation is

immediate. To see the second one, fix a lsc submeasure φ such that I = Exh(φ)

and φ({n}) > 1 for all n. As pointed out, the submeasure topology does not depend

on the choice of φ. Let ε = 1
a1

. Then, for r, s ∈ H with ρ(r, s) < ε, we can conclude

from the definition of ρ and Lemma 2.1(i) that [r	s] = 0, the first digit of r	s is 0,

and j(r	 s) = ∅. These properties together imply that r	 s = 0. By Lemma 2.12,

this implies the topology induced by d is discrete.

Now we assume I is not the ideal of finite sets, or equivalently, I has an infinite

subset of N as element. Separability follows from Lemma 2.14. It remains to see

that the metric d is complete, that is, we need to see that each d-Cauchy sequence

in I[ #»a ] converges with respect to d to an element of I[ #»a ]. It will suffice to do

it for sequences contained in H≥0 and, by Lemma 2.12, with Cauchy-ness and

convergence understood in terms of ρ. So let (r(n)) be a sequence in H≥0 such

that, for each ε > 0, ρ(r(m), r(n)) < ε for large m,n. By the definition of ρ, (r(n))

is Cauchy in R, so it converges to some r ∈ R≥0. We need to show that r ∈ H≥0

and ρ(r(n), r)→ 0. To do that, we first prove the following claim.

Claim. Given ε > 0, for each large enough M ∈ N, we have

φ
(
j(r(n)) \ {1, . . . ,M}

)
< ε for large n.

Proof of Claim. Using Lemma 2.11, for the given ε, we fix δ > 0 such that for all

s, t, u ∈ H≥0

(21) ρ(s, t), ρ(t, u) < δ ⇒ ρ(s, u) < ε/2.

By Cauchy-ness of (r(n)), there exists k such that

ρ(r(n), r(k)) < δ for all n ≥ k.

Since r(k) is in H≥0 and, from Lemma 2.14, F is dense in H≥0, there is a number

s with finitely many non-zero digits such that

ρ(r(k), s)) < δ.

By (21) and the two inequalities above, ρ(r(n), s) < ε/2 for all n ≥ k. In particular,

(22) φ
(
j(r(n)	 s)

)
<
ε

2
, for all n ≥ k.

Notice that, for each n, either r(n) 	 s = r(n) − s or r(n) 	 s = s − r(n). In

the first case, it is easy to see that subtracting s only affects finitely many digits of

r(n), so, for large enough M , which depends only on s,

(23) j
(
r(n)

)
\ {1, . . . ,M} ⊆ j

(
r(n)− s

)
.

In the second case, it is not hard to see that for large enough M , which also only

depends on s,

(24) j
(
r(n)

)
\ {1, . . . ,M} ⊆ j

(
s− r(n)

)
∪ {n | an 6= an+1}.
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Further, since {n | an 6= an+1} ∈ I, there is N ∈ N such that

φ
(
{n | an 6= an+1} \ {1, . . . , N}

)
< ε/2.

Hence, putting together both cases, we see that for M such that (23) and (24) hold

and, in the second case, M ≥ N , we have

φ
(
j(r(n)) \ {1, . . . ,M}

)
< φ

(
j(r(n)	 s)

)
+ ε/2.

This inequality implies the conclusion of the claim by (22) .

For contradiction, suppose that r /∈ H≥0, that is, j(r) /∈ I since r is non-negative.

Then there exists ε > 0 such that, for each m, there is a finite set Pm ⊆ j(r) with

min(Pm) > m and φ(Pm) ≥ ε. By Lemma 2.3(i) and the fact that r has infinitely

many non-zero digits (as otherwise r ∈ H≥0), each Pm is included in j(r(n)) for

large enough n, which contradicts Claim when m = M . Hence r is in H≥0.

We now show that ρ(r(n), r) → 0. Since r(n) 	 r → 0 in R as n → ∞, it is

enough to see that

(25) φ
(
j(r(n)	 r)

)
→ 0 as n→∞.

Assume towards a contradiction that this is not the case, so we can fix ε > 0 with

(26) φ
(
j(r(n)	 r)

)
> ε for infinitely many n.

By Lemma 2.1(i), we have that for each i, for large n, (r(n) 	 r)i = 0. Thus, we

get that, for each M ,

(27) {1, . . . ,M} ∩ j
(
r(n)	 r

)
= ∅ for large n.

By Lemma 2.4, for each n, j(r(n)	 r) is included in the union of the following sets

j(r(n)), j(r), {k | ak 6= ak+1},

{k | k + 1 ∈ j
(
r(n)

)
}, {k | k + 1 ∈ j(r)}, {k | ak+1 6= ak+2}.

Thus, by (26), (27), and Lemma 2.7(iii), there exists δ > 0 such that, for each M ,

one of the following statements is true

φ
(
j(r(n)

)
\ {1, . . . ,M}

)
> δ for infinitely many n,

φ
(
j(r) \ {1, . . . ,M}

)
> δ,

φ
(
{k | ak 6= ak+1} \ {1, . . . ,M}

)
> δ.

(28)

Since j(r), {k | ak 6= ak+1} ∈ I, for large M , the last two inequalities of (28) fail.

Hence, the first inequality holds for large M contradicting Claim. So (25) is proved.

Note that, by Lemma 2.12 and the definition of ρ, the submeasure topology on

I[ #»a ] contains the topology it inherits from R. Thus, the inclusion map I[ #»a ]→ R is

continuous. Since the algebraic operations on H are inherited from R, the inclusion

map is a Q #»a -embedding.

We prove that I[ #»a ] with + is a topological group with the submeasure topology.

Since the submeasure topology is Polish, by [5, Corollary 9.15], it suffices to show

that the functions

I[ #»a ] 3 s→ r + s ∈ I[ #»a ], for each r ∈ I[ #»a ]
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and

I[ #»a ] 3 s→ −s ∈ I[ #»a ]

are continuous. Observe that ρ has the following invariance properties

ρ(s1, s2) = ρ(r + s1, r + s2) and ρ(s1, s2) = ρ(−s1,−s2)

for all r, s1, s2 ∈ I[ #»a ]. The continuity of the functions above is now an immediate

consequence of the invariance properties of ρ and Lemma 2.12.

Finally, we show that multiplication by elements of Q #»a is continuous on I[ #»a ]

taken with the submeasure topology. Observe first that since the submeasure topol-

ogy is Polish and the identity map I[ #»a ]→ R is continuous, by [5, Corollary 15.2],

the submeasure topology has the same Borel sets as the topology I[ #»a ] inherited

from R. Now, multiplication by an element of Q #»a , being a Borel map on I[ #»a ]

taken with the topology inherited from R, is also a Borel map on I[ #»a ] taken with

the submeasure topology. It is clearly also a group homomorphism. Thus, since

the submeasure topology is Polish, by Pettis Theorem [5, Theorem 9.10], this map

is continuous. �

3. Inclusions and homomorphisms among modules

We will need two more properties of ideals and base sequences. An ideal of

subsets of N is tall if each infinite subset of N contains an infinite subset in I. If I

is of the form I = Exh(φ) for a lsc submeasure φ, then it is easy to check that I is

tall precisely when

(29) φ
(
{n}

)
→ 0 as n→∞.

We call a base sequence #»a uniform provided that, for each prime p, if p | an for

some n, then p | an for all but finitely many n; in other words,

pr( #»a ) = {p | p a prime and p | an for some n}.

3.1. Inclusions and non-inclusions. In this section, we view modules of the form

I[ #»a ] simply as subsets of R. We are interested in the inclusion relation among such

sets as the ideal I varies.

First, we have an observation that inclusion between ideals implies inclusion

between the corresponding modules.

Proposition 3.1. Let I, J be translation invariant analytic P-ideals, and let #»a be

a base sequence adapted to both I and J . If I ⊆ J , then I[ #»a ] ⊆ J [ #»a ].

Proof. The inclusion I[ #»a ] ⊆ J [ #»a ] follows directly from the assumption I ⊆ J . �

Now, we prove a theorem asserting that a slightly stronger notion of non-inclusion

between ideals implies non-inclusion between the corresponding modules, even if

we allow the modules to be multiplied by non-zero real numbers. We need the

following two definitions. Let I and J be analytic P-ideals. We say that I is not

included in J on intervals if there are lsc submeasures φ and ψ with I = Exh(φ)

and J = Exh(ψ), for which there exists d > 0 such that

inf{φ(P ) | P an interval in N with ψ(P ) ≥ d} = 0.
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Notice that this property implies I * J .

For a subset X of R and a real number c, we write

cX = {cx | x ∈ X}.

Theorem 3.2. Let I, J be translation invariant, analytic P-ideals with I being tall.

Let #»a be a base sequence adapted to both I and J . If I is not included in J on

intervals, then c I[ #»a ] 6⊆ J [ #»a ], for each non-zero real number c.

Proof. Since I[ #»a ] is closed under addition and taking additive inverses, it will suffice

to show the conclusion only for c ≥ 1. So we assume c ≥ 1, and set

C = c I[ #»a ],

with the aim to show that C 6⊆ J [ #»a ].

Since I is not included in J on intervals, there are lsc submeasures φ and ψ such

that I = Exh(φ) and J = Exh(ψ), for which there exist d > 0 and a sequence of

intervals Pn = [ln,mn], with mn < ln+1, such that

(30) ψ(Pn) > d and φ(Pn) < 2−n.

We also set j = j #»a .

Claim 1. Given n ∈ N, there is y ∈ C such that

(i) j(y) ⊇ Pn;

(ii) 0 ≤ y < 1
a1a2···aln

;

(iii) ymn+2 6= 0.

Proof of Claim 1. To find such y, pick z ∈ [0, 1) so that

(31) j(z) ∩ [1,mn] = Pn; zmn+2 6= 0; zi = 0, for all i ∈ N \ [ln + 1,mn + 2].

Note that from (31), we have

(32) 0 < z <
1

a1a2 · · · aln
.

Since C is dense in R, we can approximate z from above by elements y of C.

For a tight enough such approximation y, we get (ii) from (32), (i) from (31) and

Lemma 2.3(ii), and (iii) from (31) and Lemma 2.2(ii). The claim follows.

Claim 2. Given ε > 0, for large enough n ∈ N the following statement holds. For

each v ∈ I[ #»a ] with 0 ≤ v < 1
a1a2···aln

, there exists w ∈ I[ #»a ] such that

(i) 0 ≤ w ≤ v < w + 1
c a1a2···amn+2

;

(ii) φ
(
j(w)

)
< ε.

Proof of Claim 2. Let k0 ∈ N be such that 2k0 > c. For large enough n, we have

(33) 2−n <
ε

3

and, by tallness of I applied using condition (29),

(34) φ(X) <
ε

3
, for each set X of size ≤ k0 + 3 with i > mn for all i ∈ X.
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Fix n with (33) and (34). Since v ∈ I[ #»a ] and v ≥ 0, we have j(v) ∈ I, so there

is N ∈ N with N > mn + k0 + 2 and such that

(35) φ
(
j(v) \ [1, N ]

)
< ε/3.

Let

K = [mn + 1, mn + k0 + 2],

and define w to be the real number such that

wi =

{
vi, if i ≤ mn + k0 + 2 or i ≥ N + 1,

0, otherwise.

Since v and w differ on finitely many digits and v ∈ I[ #»a ], it follows from the

definition of the underlying set of I[ #»a ] that w ∈ I[ #»a ].

We check that w satisfies the two properties in the claim. First, directly from

the definition we have

0 ≤ v − w <
1

a1 · · · amn+2 · · · amn+k0+2
≤ 1

a1 · · · amn+2 2k0
.

from which, by our choice of k0, we get (i). Second, since 0 ≤ w ≤ v < 1
a1a2···aln

,

using Lemma 2.1(i), we see that the first ln digits of w are 0. It follows that

(36) j(w) ∩ [1, ln − 1] = ∅.

Note that j(w) ∩ [mn + 1, N ] is a subset of K ∪ {N}. Hence, by (34), we get

(37) φ
(
j(w) ∩ [mn + 1, N ]

)
≤ φ

(
K ∪ {N}

)
< ε/3.

From the definition of w and by (35), we have

(38) φ
(
j(w) \ [1, N ]

)
= φ

(
j(v) \ [1, N ]

)
< ε/3.

Putting together (36), (37) and (38), we get

φ(j(w)) < 0 + φ(Pn) + ε/3 + ε/3 = φ(Pn) + 2ε/3.

The above inequality implies the conclusion of the claim by (30) and (33).

We use Claims 1 and 2 to show that given ε > 0, there exists w ∈ I[ #»a ] such that

(a) 0 ≤ w < ε;

(b) φ
(
j(w)

)
< ε;

(c) ψ
(
j(cw)

)
> d.

Let ε > 0. Fix n large enough so the conclusion of Claim 2 holds and

(39)
1

a1a2 · · · aln
< ε.

For this n, Claim 1 produces y ∈ C with properties (i)–(iii) from that claim. Set

v =
y

c
.

Note that v ∈ I[ #»a ] since y ∈ C. Using the inequality c ≥ 1 and Claim 1(ii), we get

(40) 0 ≤ v ≤ y < 1

a1a2 · · · aln
.
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So Claim 2 applies to v producing w ∈ I[ #»a ] with properties (i) and (ii) from that

claim.

Since, by Claim 2(i), 0 ≤ w ≤ v, we get (a) from (39) and (40). Point (b) is

immediate from Claim 2(ii). By Claim 2(i), we have

0 ≤ cw ≤ y < cw +
1

a1a2 · · · amn+2
.

These inequalities imply (c) by Claim 1(i) and (iii), Lemma 2.1(ii), and (30).

Now, to finish the proof of the theorem, assume for contradiction that C ⊆
J [ #»a ]. Then x → cx defines a function from I[ #»a ] to J [ #»a ]. The map x → cx,

being a Borel map from R to R, is also a Borel map from I[ #»a ] to J [ #»a ] both

taken with the submeasure topologies by [5, Corollary 15.2]. Moreover, it is a

group homomorphism, so by Pettis Theorem [5, Theorem 9.10], it is continuous.

However, the existence of w ∈ I[ #»a ] for each ε > 0 with properties (a)–(c) implies,

by Lemma 2.12, that this map is discontinuous at 0, yielding a contradiction. �

3.2. Consequences concerning module homomorphisms. We derive some

consequences of Theorem 3.2 for homomorphisms among modules constructed in

Section 2. We will use these consequences to prove Theorem 1.1.

Lemma 3.3. Let I, J be translation invariant, analytic P-ideals, with I being tall.

Let #»a be a uniform base sequence adapted to both I and J . If I is not included in

J on intervals, then each continuous Q #»a -module homomorphism from I[ #»a ] to J [ #»a ]

is identically equal to 0.

To prove Lemma 3.3, we need a result on the form of continuous module homo-

morphisms.

Lemma 3.4. Let I, J be translation invariant, analytic P-ideals, with I having an

infinite subset of N as element. Let #»a be a uniform base sequence adapted to I and

J . If f : I[ #»a ]→ J [ #»a ] is a continuous Q #»a -module homomorphism, then there exists

c ∈ R with f(y) = c y for all y ∈ I[ #»a ].

Proof. We begin with showing that Q #»a is dense in I[ #»a ]. Let F be the collection of

elements of R≥0 that have finitely many non-zero digits. By Lemma 2.14, F ∪−F
is dense in I[ #»a ]. We show F ∪ −F = Q #»a .

Suppose r is non-negative and in Q #»a , that is, r = k
l , where k ∈ N and l is a

product of primes in pr( #»a ). Each prime in pr( #»a ) divides an for all but finitely

many n. Thus, there is N such that l | a1a2 · · · aN . Therefore, a1a2 · · · aNr is an

integer, which implies that rn = 0 for all n > N . It follows that r is in F . By the

same argument, we see that if r ∈ Q #»a is non-positive, then r is in −F .

Conversely, if r is in F ∪−F , there exists N such that a1a2 · · · aNr is an integer.

Hence r is of the form k
a1a2···aN . Each prime p that divides a1a2 · · · aN divides some

an, so p is in pr( #»a ) by the uniformity of #»a . Therefore, r is in Q #»a .

We continue our proof of Lemma 3.4. Note that 1 is in I[ #»a ] since 1 has finitely

many non-zero digits. Set

c = f(1).
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Note that for each y ∈ Q #»a , we have

(41) f(y) = f(y1) = yf(1) = c y,

because f is a Q #»a -module homomorphism.

Since f is continuous as a function from I[ #»a ] to J [ #»a ], and the topology on J [ #»a ]

contains the topology it inherits from R, f is continuous as a function from I[ #»a ]

to R. Similarly, since the topology on I[ #»a ] contains the topology it inherits from

R, the function y → c y is continuous as a function from I[ #»a ] to R. It follows that

(41) holds for all y in the closure of Q #»a in I[ #»a ], which gives the lemma as Q #»a is

dense in I[ #»a ]. �

Proof of Lemma 3.3. The conclusion of the corollary follows from Theorem 3.2 and

Lemma 3.4. �

4. Proof of Theorem 1.1

We construct a family Ix, x ⊆ N, of analytic P-ideals that will allow us to

apply Lemma 3.3 to obtain Theorems 1.1. This family is probably the simplest one

that can serve our purpose, but some more complicated families from the literature

would also work; see, for example, [6].

For k ∈ N, let

Pk = {n ∈ N | 2k−1 ≤ n < 2k}.
We note the following properties of the intervals Pk:

(a)
∑
n∈Pk

1
n ≥

1
2 ;

(b)
∑
n∈a

1
n <∞, for each a ⊆ N that has at most one point in common with

Pk for each k.

For x ⊆ N, set Ax =
⋃
k∈x Pk, and let, for a ⊆ N,

φx(a) =
∑

n∈a∩Ax

1

2n
+

∑
n∈a\Ax

1

n
.

It is clear that φx is a lsc submeasure. Finally, define

Ix = Exh(φx)

and observe that

Ix = {a ⊆ N | φx(a) <∞}.
It is then clear that Ix is an analytic P-ideal and, using (b), that it is translation

invariant and tall. Furthermore, observe that, for x, y ⊆ N,

(42) x \ y finite =⇒ Ix ⊆ Iy,

(43) x \ y infinite =⇒ Ix is not included in Iy on intervals.

The first implication is clear since the assumption gives that Ax\Ay is finite. To see

the second implication, note that if x \ y is infinite, then the sequence of intervals

(Pk)k∈x\y witnesses the non-inclusion on intervals as, by (a), φy(Pk) ≥ 1/2 for

k ∈ x \ y, while φx(Pk)→ 0 for x \ y 3 k →∞.
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Proof of Theorem 1.1. Let R be a subring of Q not equal to Z; that is,

R = P−1Z

for a nonempty set P of primes. It is easy to find a uniform base sequence #»a with

P = pr( #»a ) and {k | ak 6= ak+1} ⊆ {2k | k ∈ N}.

Note that the first equality gives R = Q #»a and the second one ensures that #»a is

adapted to Ix for each x ⊆ N.

Then, for each x ⊆ N, Ix[ #»a ] is a Polish R-module by Theorem 2.13. Let

fx : Ix[ #»a ] → R be the identity map. This is a continuous R-embeding into R.

Note that since each Ix is Fσ, it follows from Lemma 2.8 that Ix[ #»a ] is an Fσ as a

subset of R.

Observe that, by Proposition 3.1 and (42), if x \ y is finite, x, y ⊆ N, then

Ix[ #»a ] ⊆ Iy[ #»a ] as subsets of R. The identity map Ix[ #»a ]→ Iy[ #»a ] is obviously an R-

module homomorphism and it is continuous by Pettis Theorem [5, Theorem 9.10].

If x \ y is infinite, then the conclusion follows from (43) and Lemma 3.3. �
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