
FINITE RAMSEY THEORY THROUGH CATEGORY THEORY

S LAWOMIR SOLECKI

Abstract. We present a new, category theoretic point of view on finite Ram-

sey theory. Our aims are as follows:

— to define the category theoretic notions needed for the development of

finite Ramsey Theory,

— to state, in terms of these notions, the general fundamental Ramsey

results (of which various concrete Ramsey results are special cases), and

— to give self-contained proofs within the category theoretic framework of

these general results.

We also provide some concrete illustrations of the general method.

“unexplained beauty arouses an

irritation in me”

William Empson, Seven Types of

Ambiguity
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1. Introduction

Ramsey Theory is a subfield of Combinatorics whose roots lie in Logic; see [17];

but see also [23] for another early source of Ramsey theoretic ideas. It is an area

that aims to find implementations of the slogan “total disorder is unavoidable”—

its theorems search, in a space of elements under discussion, for subspaces whose

elements are not distinguishable from each other. Such theorems have a common

form but they differ deeply in the type of elements and spaces they concern and in

the methods employed in their proofs. At this point of its development, Ramsey
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Theory strongly connects not only with Logic but also with Topological Dynam-

ics [12], [24] and Banach Space Theory [1], and, of course, it continues to be an

important branch of Combinatorics [16].

The present paper treats Finite Ramsey Theory, the part of Ramsey Theory in

which the elements are finite, the spaces of elements are finite, while the proofs rely

on iterative inductive arguments. The paper can be seen as a contribution to the

efforts aimed at unifying Ramsey theoretic results, as in [10] for finite structural

Ramsey theory, in [2] and [22] for infinite dimensional Ramsey theory, and in [20]

for the ultrafilter methods in Ramsey theory.

We give now examples of some classical Ramsey statements, namely Ramsey’s

original theorem [17], van der Waerden’s theorem [23], and the dual Ramsey theo-

rem of Graham–Rothschild [6]. Our goal in reminding the reader about these results

is partly to clarify what type of theorems form the starting point of the category

theory approach presented in this paper. For a positive integer r, by an r-coloring

of a set A we understand a function on A with at most r values. Ramsey’s original

theorem proved in [17] is the following statement.

For positive integers r and k, l, there exists a positive integer m such that, for each

r-coloring of all k-element subsets of an m-element set X, there exists an l-element

set Y Ď X such that all k-element subsets of Y get the same color.

We cover this theorem as part of our framework in Section 4.4. The following

statement is van der Waerden’s theorem [23].

For positive integers r, k, there is a positive integer l such that, for each r-coloring

of the set t1, 2, . . . , lu, there exists an arithmetic progression of length k, whose

elements get the same color.

A purely combinatorial phrasing of the arithmetic statement above was found by

Hales and Jewett in [9]. We treat this combinatorial statement as part of our

approach in Section 3.5. Finally, we state the dual Ramsey theorem of Graham–

Rothschild [6]. By a k-partition of a set X we understand a family of k non-empty

sets whose union is X.

For positive integers r and k, l, there exists a positive integer m such that, for each

r-coloring of all k-partitions of an m-element set X, there exists an l-partition P

of X such that all k-partitions of X that are coarser than P get the same color.

Again, the above statement can be seen as a particular case of the general theorems

of this paper. We do not present this derivation in detail but we invite the reader

to do it on their own, perhaps following the lead of [18, Section 8.2].

We move to discussing the category theoretic set-up. If C is a category, by obpCq

we denote the class of all objects of C; for a, b P obpCq, hompa, bq stands for the

class of all morphisms in C from a to b. It has been known for some time, at least

since the early 1970s, that Ramsey theoretic statements are naturally expressed in

the language of category theory. Given a category C, an object a P obpCq is said to

have the Ramsey property if for each object b P obpCq and a positive integer r,

there is c P obpCq such that for each r-coloring of hompa, cq, there is g P hompb, cq
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that makes the set

g ¨ hompa, bq “ tg ¨ f | f P hompa, bqu

monochromatic. One then calls C a Ramsey category if each of its objects

has the Ramsey property. It is also known that the following notion is a useful

refinement of the Ramsey property. For a, b P obpCq, the Ramsey degree of the

pair a, b is the smallest positive integer k, if such a number exists, such that for each

positive integer r, there exists c P obpCq with the property that, for each r-coloring

χ of hompa, cq, there exists g P hompb, cq with χ attaining at most k values on

g ¨ hompa, bq. If such a number k does not exist, we say that the Ramsey degree of

the pair a, b is 8. We write

(1) rdpa, bq

for the Ramsey degree of a, b. More studied, and often more useful, notion is that

of Ramsey degree of a single object. Ramsey degree of a is defined by

(2) rdpaq “ sup
bPobpCq

rdpa, bq.

Having the Ramsey property is expressible in terms of the Ramsey degree—a has the

Ramsey property precisely when rdpaq “ 1. This observation leads to an important

easing of the condition of the category C being Ramsey to the condition of C having

finite Ramsey degrees, which asserts that, for each a P obpCq, rdpaq ă 8. The

importance of finiteness of Ramsey degree stems partly from it being a refinement

of the Ramsey property and partly, and more significantly, from its relevance to

topological dynamics as indicated in [12] and, especially, in [24].

Going beyond just formulating Ramsey theoretic notions, several papers used the

language of category theory to carry out proofs of finite Ramsey theoretic state-

ments; see, for example, [5], [11], [13], [14], and [15]. This was usually done by

identifying a category A that was known to be Ramsey or to have a related prop-

erty, and then transferring Ramseyness or the related property from A to another

category B by finding an, often subtle, connection between A and B. Another

distinct approach was presented by Leeb in [13]. In a number of specific categories,

he verified certain identities, called by him Pascal identities, and then working sep-

arately in each of these categories, but using similarly structured arguments, he

showed that the categories are Ramsey, from which various classical Ramsey theo-

rems followed. In [11], certain Ramsey theoretic constructions were revealed to be

canonical category theory constructions. In his paper [8], Gromov advocated for a

broad use of category theory in Ramsey theory.

In the current paper, expanding and simplifying the author’s approach of [18]

and following the spirit of [8], we present a way of seeing finite Ramsey theory in

the category theoretic terms that is global, in the sense that the whole theory is

developed from scratch in the category theoretic framework as opposed to trans-

ferring specific Ramsey results between categories or running separate proofs in

different categories. We change the usual perspective and consider functors, rather

than categories, as fundamental to the development. More precisely, we formulate a
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general pigeonhole principle (P) for functors between categories. On our view, this

is the main notion of finite Ramsey theory, and the theory is concerned with prov-

ing (P) for various functors. To this end, we show that (P) persists under several

natural operations applied to functors. Further, we formulate a localized version

(FP) of (P) and show that, for essentially all relevant functors, (FP) implies (P).

The advantage of having this implication resides in a relative ease of proving the lo-

calized pigeonhole principle (FP) for many functors in comparison with proving (P)

itself. These general theorems allow us to establish results giving an upper bound

on Ramsey degrees. As explained above, such upper estimates are generalizations

of the statement that the category is Ramsey thereby making it possible to deduce

various concrete Ramsey theorems.

It may be worth emphasizing that the point we are making is not so much that

the concrete Ramsey theorems can be derived using our methods, it is more that

they are particular cases (for concrete functors) of our results. We give several

examples of theorems that can be seen as such—Ramsey’s theorem [17] and the

product Ramsey theorem, both in Section 4.4; the Hales–Jewett theorem [9] in

Section 3.5; Fouché’s Ramsey theorem for trees [4] in Section 4.5. These examples

should be viewed merely as illustrations since many other theorems, for example,

the Ramsey theorems for trees due to various mathematicians that are surveyed in

[19] and treated there with the methods of [18], the Ramsey theorems considered

in [18], for example, the dual Ramsey theorem of Graham–Rothschild [6], and the

dual Ramsey theorem for trees from [21], can all be seen as, in essence, particular

cases of the general theorems of this paper.

As already mentioned, our approach here builds on [18]. The main advances

with respect to that paper consist of the use of categories and functors instead

of various types of ad hoc structures (in particular, eliminating partial or linear

orders from the general structures), weakening of the localized pigeonhole principle

(from pLPq in [18] to pFPq here), obtaining upper estimates on the Ramsey degree

rather than just Ramsey statements, and an overall substantial simplification of

the presentation.

The following conventions will be used throughout. By N we understand the set

of all natural numbers including 0. For m,n P Z, we write

rm,ns “ ti P Z | m ď i ď nu,

For n P N and m “ 1, we shorten the above piece of notation to

rns “ r1, ns.

In particular, r0s “ H. The cardinality of a set x will be denoted by |x|. So, if x is

finite, then |x| P N. For a functor γ defined on a category C and for an object a of

C and a morphism f of C, we often write

γa and γf

for γpaq and γpfq.

I would like to thank Sebastian Junge, whose remarks improved the presentation

of the material in this paper.
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2. Condition (P) and frank functors

2.1. Formulation of condition (P). We regard the following statement as the

fundamental pigeonhole principle for a functor δ : C Ñ D between the categories

C and D. In a nutshell, it says that, in a suitable sense, δ controls colorings.

Definition 2.1. Let δ be a functor defined on a category C, and let a, b P obpCq.

We declare δ to fulfill (P) at a, b if for each r P N, there exists c P obpCq such

that, for each r-coloring χ of hompa, cq, there exists g P hompb, cq with

δf1 “ δf2 ùñ χpg ¨ f1q “ χpg ¨ f2q,

for all f1, f2 P hompa, bq.

For ease of phrasing, we adopt the following conventions. We say that δ fulfills

(P) at a P obpCq if it fulfills (P) at a, b for all b P obpCq. We say simply that δ

fulfills (P) if it fulfills (P) at all a, b P obpCq. Note that the condition of fulfilling

(P) at a is stronger than fulfilling (P) at a, b. We will be mostly interested in this

stronger condition, but using the weaker condition is somewhat easier and permits

us to make more precise statements in some situations.

The fundamental connection of property (P) with Ramsey theoretic notions of

Ramsey degrees (recall (1) and (2) here) goes through the following proposition,

which improves the trivial bound rdpa, bq ď |hompa, bq|.

Proposition 2.2. Let ∆ be a family of functors whose domains are all equal to C.

(i) If each δ P ∆ fulfills (P) at a, b P obpCq, then

rdpa, bq ď min
δP∆

ˇ

ˇδ
`

hompa, bq
˘
ˇ

ˇ.

(ii) If each δ P ∆ fulfills (P) at a P obpCq, then

rdpaq ď sup
bPobpCq

min
δP∆

ˇ

ˇδ
`

hompa, bq
˘
ˇ

ˇ.

Proof. By the definition of rdpaq in (2), it suffices to show (i). This amounts to

proving that given r P N, there exists c such that for each r-coloring of hompa, cq,

there exists g P hompb, cq with the number of colors attained on g¨hompa, bq bounded

by |δ
`

hompa, bq
˘

|. This statement is an immediate consequence of δ fulfilling (P)

at a. �

2.2. Definition of frank functors. When dealing with property (P) for a functor

δ, sometimes we will need to make an additional surjectivity assumption on δ. This

surjectivity assumption is critical and seems interesting enough to isolate it here.

Definition 2.3. A functor δ : C Ñ D between two categories C and D is called

frank if, for all a P obpCq and b1 P obpDq, there exists b P obpCq with

δpbq “ b1 and δ
`

hompa, bq
˘

“ hompδa, δbq.

In the second equality in the definition above, the inclusion δ
`

hompa, bq
˘

Ď

hompδa, δbq follows just from δ being a functor. Therefore, the point of the equality

is that δ is surjective as a function from hompa, bq to hompδa, δbq.
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Lemma 2.4. (i) The identity functor is frank.

(ii) The composition of frank functors is a frank functor.

(iii) If δ : C Ñ D is a frank functor, then, for all d1, d2 P obpDq, there are

c1, c2 P obpCq such that

δpc1q “ d1, δpc2q “ d2, and δ
`

hompc1, c2q
˘

“ hompd1, d2q.

Proof. Points (i) and (ii) are almost immediate, and we leave checking them to

the reader. To see (iii), given d1, use frankness of δ to find c1 with δpc1q “ d1.

Now use frankness of δ again to find c2 with δpc2q “ d2 and δ
`

hompc1, c2q
˘

“

hompd1, d2q. �

2.3. Unifying assumptions. Without harming applicability in finite Ramsey the-

ory of the general theorems presented below, one may always make the following

unifying assumptions:

— functors are frank

— categories are such that hompa, bq is finite for all objects a, b.

All the general theorems proved below hold under these assumptions. Of course,

when stating the theorems, we make assumptions that are appropriate (minimal)

for each theorem.

2.4. Examples—frank functors fulfilling (P). We describe here some examples

of frank functors for with property (P).

1. Let C be a category. The identity functor C Ñ C is frank and fulfills (P) at

each pair of objects of C.

2. We define here a category P and a frank functor BP : P Ñ P that will

play an important auxiliary role in proving the Hales–Jewett theorem. Fulfilling of

condition (P) by BP is the usual pigeonhole principle.

Objects of P are

— pairs pk, iq, where k P N, k ě 1 if i P t0, 2u, and k ě 2 if i “ 1.

Morphisms of P from an object pk, iq to an object pk1, i1q will be certain functions

from rk1s to rks, whose nature will depend on the second coordinates i and i1. We

define the morphisms as follows:

— p P hom
`

pl, 2q, pm, 2q
˘

, if p : rms Ñ rls is a surjection with ppiq ď ppi` 1q ď

ppiq ` 1 for i P rm´ 1s;

— x P hom
`

pk1, 1q, pl, 2q
˘

, if x : rls Ñ rk1s and there are 1 ď a ă a` 1 ă b ď l

such that x is constant on the intervals r1, as, ra` 1, b´ 1s, and rb, ls and

xp1q “ k1 and xplq “ k1 ´ 1;

— x P hom
`

pk0, 0q, pl, 2q
˘

, if x : rls Ñ rk0s and there are 1 ď a ă a` 1 ă b ď l

such that x is constant on the intervals r1, as, ra` 1, b´ 1s, and rb, ls and

xp1q “ xplq “ k0;

— there are no other morphisms except for identities.

Composition of morphisms in P will be the composition of functions taken with

reverse order:
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— for p P hom
`

pl, 2q, pm, 2q
˘

and x P hom
`

pk, iq, pl, 2q
˘

, with i P t0, 1u, let

p ¨ x “ x ˝ p.

— for morphisms p P hom
`

pl, 2q, pm, 2q
˘

and q P hom
`

pm, 2q, pn, 2q
˘

, let

q ¨ p “ p ˝ q.

The functor BP : P Ñ P acts non-trivially only on objects of the form pk, 1q and

on morphisms in hom
`

pk, 1q, pl, 2q
˘

, on which it lowers the top value by 1. So the

functor BP is defined by:

— BP pk, iq “ pk, iq, for i “ 1, and BP pk, 1q “ pk ´ 1, 0q;

— BP p “ p, for p P hom
`

pl, 2q, pm, 2q
˘

;

— BPx “ x, for x P hom
`

pk0, 0q, pl, 2q
˘

;

— BPx “ minpx, k1 ´ 1q, for x P hom
`

pk1, 1q, pl, 2q
˘

.

Lemma 2.5. (i) BP : P Ñ P is a functor and it is frank.

(ii) BP fulfills (P).

Proof. Point (i) is straightforward, and we leave checking it to the reader.

To see (ii), we check (P) at pk, 1q, pl, 2q, which is the only not entirely trivial

case. After fixing r P N, we need to find an object pm, 2q for which the conclusion

of (P) holds. It is good to keep in mind that all we are doing is proving a version

of the standard pigeonhole principle.

Put m “ pl ´ 1qr ` 2. Let χ be an r-coloring of hom
`

pk1, 1q, pm, 2q
˘

, that is, an

r-coloring of the set of all x : rms Ñ rk1s, for which there exist 1 ď ax ă ax ` 1 ă

bx ď m such that x is constant on the intervals r1, axs, rax` 1, bx´ 1s, and rbx,ms,

and xp1q “ k1 ´ 1 and xpmq “ k1. Consider the r-coloring χ1 of rm´ 1s given by

χ1pjq “ χpxjq,

where xj : rms Ñ rk1s, with j P rm´ 1s, is such that

xj æ rjs “ k1 ´ 1 and xj æ rj ` 1,ms “ k1.

Note that xj P hom
`

pk1, 1q, pm, 2q
˘

, so χpxjq is defined. By our choice of m, χ1 is

constant on a subset of rm´ 1s of size l. So there exists p : rms Ñ rls, a surjection

with ppjq ď ppj ` 1q ď ppjq ` 1 for j P rm´ 1s, that is, p P hom
`

pl, 2q, pm, 2q
˘

, and

such that χ1 is constant on the set

J “ tj P rm´ 1s | ppjq ă ppj ` 1qu.

The above condition on χ1 means that χpxjq is constant as j varies over J .

We claim that this p works. Indeed, let x, x1 P hom
`

pk1, 1q, pl, 2q
˘

be such that

BPx “ BPx
1. Then either x “ x1 or there are i, i1 P rl ´ 1s such that

x æ ris “ k1 ´ 1, x æ ri` 1,ms “ k1,

x1 æ ri1s “ k1 ´ 1, x1 æ ri1 ` 1,ms “ k1.

In the first case, clearly χpx˝pq “ χpx1˝pq. In the second case, for j, j1 P J specified

by

i “ ppjq ă ppj ` 1q and i1 “ ppj1q ă ppj1 ` 1q,
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we have x ˝ p “ xj and x1 ˝ p “ xj1 . Thus, we get

χpx ˝ pq “ χpxjq “ χpxj1q “ χpx1 ˝ pq,

as required. �

3. The following example does fulfill condition (P), but we postpone its verifi-

cation till we have a general result from which it will follow readily. The example

will serve to prove the standard Ramsey theorem.

We define a category R and a functor BR : RÑ R. The objects of the underlying

category will be natural numbers n and morphisms will be, essentially, subsets x of

rns. For technical reasons, for such a set x, we will need to remember which rns it

is designated to be a subset of; so the morphisms will actually be pairs px, nq. For

n P N, we write

(3) n´ 1 “ maxpn´ 1, 0q.

Objects of R are:

— n, for n P N.

Morphisms of R are described as follows:

— px, nq P hompm,nq, for x Ď rns and |x| “ m.

Composition in R is defined by the following rule:

— for morphisms px,mq P hompl,mq and py, nq P hompm,nq, let

py, nq ¨ px,mq “ pfypxq, nq,

where fy : rms Ñ y is the unique increasing bijection.

The functor BR : RÑ R is defined using the notation set up by (3):

— BRn “ n´ 1;

— BRpx, nq “ pxztmaxxu, n´ 1q, for px, nq P hompm,nq with x “ H;

— BRpH, nq “ pH, n´ 1q, for pH, nq P homp0, nq.

3. Propagating condition (P)

In this section, we prove three theorems that let us transfer property (P) from

one functor to another.

3.1. Composition. The following theorem asserts that, under appropriate as-

sumptions, property (P) is preserved under composition of functors.

Theorem 3.1. Let γ : C Ñ D and δ : D Ñ E be functors with γ being frank. Let

a, b P obpCq. If γ fulfills (P) at a and δ fulfills (P) at γpaq, γpbq, then δ ˝ γ fulfills

(P) at a, b.

Proof. We write δγ for δ ˝ γ.

Fix a, b P obpCq with the aim to show that δγ has (P) at a, b. In order to do

this, let r P N. The objects a, b and the natural number r will remain fixed for the

rest of this proof.
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Claim. There is c P obpCq such that for every r-coloring χ of hompγa, γcq, there is

g P hompb, cq such that for f1, f2 P hompa, bq

(4) δγf1 “ δγf2 ùñ χ
`

γpg ¨ f1q
˘

“ χ
`

γpg ¨ f2q
˘

.

Proof of Claim. Since δ fulfills (P) at γa and γb, we can find d P obpDq such

that for every r-coloring χ of hompγa, dq, there is g1 P hompγb, dq such that, for

h1, h2 P hompγa, γbq, we have

(5) δh1 “ δh2 ùñ χ
`

g1 ¨ h1

˘

“ χ
`

g1 ¨ h2

˘

.

By frankness of the functor γ, there is c P obpCq such that d “ γc and, for every

g1 P hompγb, dq, there is g P hompb, cq with g1 “ γg. We claim that this c makes

the conclusion of the claim true.

Let χ be a r-coloring of hompγa, γcq “ hompγa, dq. By our choice of d, there

is g1 P hompγb, dq such that, for h1, h2 P hompγa, γbq, condition (5) holds. Let

g P hompb, cq be such that g1 “ γg. In order to check condition (4), fix f1, f2 P

hompa, bq with

(6) δγf1 “ δγf2.

Note that γf1, γf2 P hompγa, γbq, and therefore by (5) and (6), we have

χ
`

g1 ¨ pγf1q
˘

“ χ
`

g1 ¨ pγf2q
˘

.

Since

g1 ¨ pγf1q “ pγgq ¨ pγf1q “ γpg ¨ f1q and g1 ¨ pγf2q “ pγgq ¨ pγf2q “ γpg ¨ f2q,

it follows that χ
`

γpg ¨ f1q
˘

“ χ
`

γpg ¨ f2q
˘

, which gives (4) and the claim.

Now, we prove the conclusion of the theorem from the claim. We are seeking

c P obpCq with the following property: for each r-coloring χ of hompa, cq there

exists g P hompb, cq such that, for f1, f2 P hompa, bq,

(7) δγf1 “ δγf2 ùñ χpg ¨ f1q “ χpg ¨ f2q.

We apply the claim to obtaining c1 P obpCq. Next, recall that we assume that γ

fulfills (P) at a, so it fulfills (P) at a, c1, which, for the given r, yields c P obpCq.

We claim that this c works.

Let χ be a r-coloring of hompa, cq. By the choice of c there exists g1 P hompc1, cq

such that for f1, f2 P hompa, bq and h1, h2 P hompb, c1q,

(8) γph1 ¨ f1q “ γph2 ¨ f2q ùñ χ
`

g1 ¨ ph1 ¨ f1q
˘

“ χ
`

g1 ¨ ph2 ¨ f2q
˘

.

We define a r-coloring χ̄ on hompγa, γc1q. First we specify χ̄ of the subset

tγph ¨ fq | f P hompa, bq, h P hompb, c1qu

of hompγa, γc1q. So, for f P hompa, bq and h P hompb, c1q, let

(9) χ̄
`

γph ¨ fq
˘

“ χ
`

g1 ¨ h ¨ f
˘

.
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The function χ̄ is well-defined by (8). Now we extend χ̄ to an r-coloring of the whole

set hompγa, γc1q in an arbitrary way. We denote this extension again by χ̄. By our

choice of c1 from Claim, there exists g2 P hompb, c1q such that, for f1, f2 P hompa, bq,

(10) δγf1 “ δγf2 ùñ χ̄
`

γpg2 ¨ f1q
˘

“ χ̄
`

γpg2 ¨ f2q
˘

.

Combining (10) with (9), we see that, for f1, f2 P hompa, bq,

δγf1 “ δγf2 ùñ χ
`

pg1 ¨ g2q ¨ f1

˘

“ χ
`

pg1 ¨ g2q ¨ f2

˘

.

Thus, g “ g1 ¨ g2 P hompb, cq is as required by (7). �

The following corollary improves the estimate from Proposition 2.2. For a family

∆ of endofunctors of a category C, by x∆y we denote the semigroup generated by

∆ using composition, that is,

x∆y “ tδ | δ “ δ1 ˝ ¨ ¨ ¨ ˝ δn, for δ1, . . . , δn P ∆u.

Corollary 3.2. Let ∆ be a family of endofunctors of C with each endofunctor in

∆ being frank and fulfilling (P).

(i) For each a, b P obpCq, we have

rdpa, bq ď mint
ˇ

ˇδ
`

hompa, bq
˘
ˇ

ˇ | δ P x∆yu.

(ii) For each a P obpCq,

rdpaq ď sup
bPobpCq

mint
ˇ

ˇδ
`

hompa, bq
˘
ˇ

ˇ | δ P x∆yu.

Proof. It is enough to check (i) as (ii) follows from (i) immediately. By Lemma 2.4 (ii),

every endofunctor in x∆y is frank. By Theorem 3.1, each endofunctor in x∆y fulfills

(P) at a, b. The conclusion follows from Proposition 2.2(i). �

3.2. Products. We define the finitely supported product of categories in a natural

way. Let Ci, i P I, be a family of categories. Define
â

I

Ci

as follows. Objects of this category are of the form

pciqiPK ,

where K Ď I is finite and ci P obpCiq. Morphisms are of the form

pfiqiPK ,

where K Ď I is finite and fi P hompci, diq, for ci, di P obpCiq, and we declare the

above morphism to be a morphism from pciqiPK and pdiqiPK . To relax the notation,

we will write

pciqK and pfiqK

for the object pciqiPK and the morphism pfiqiPK , respectively.

Assume now we have two families of categories Ci and Di with i P I. Let

δi : Ci Ñ Di be a functor. Define bIδi :
Â

I Ci Ñ
Â

I Di by letting

pbIδiq
`

pciqK
˘

“ pδipciqqK and pbIδiq
`

pfiqK
˘

“ pδipfiqqK .
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It is immediate that biPIδi is a functor. If Ci “ C and δi “ δ for all i P I, we write
Â

I C and bIδ for
Â

I Ci and bIδi, respectively.

The following lemma is easy to check and we leave doing it to the reader.

Lemma 3.3. If each functor δi : Ci Ñ Di, i P I is frank, then bIδi :
Â

I Ci Ñ
Â

I Di is frank.

The following theorem gives the transfer of property (P) from the factors to the

product of categories.

Theorem 3.4. Let δi : Ci Ñ Di, i P I be frank functors. Let K Ď I be finite, and

assume that hompa, bq is finite for all a, b P obpCiq with i P K. If δi fulfills (P) at

ai P obpCiq, for each i P K, then bIδi fulfills (P) at paiqK .

Proof. Fix an enumeration of K, that is,

K “ tij | j “ 1, . . . , ku.

We define the following families of categories

E0
i “ Ci, for all i P I,

and, for p “ 1, . . . , k ` 1,

Epi “

$

’

’

&

’

’

%

Di, i P IzK;

Di, i “ ij , for some j ă p;

Ci, i “ ij , for some j ě p.

In particular, E1
i “ Di for all i P IzK, and E1

i “ Ci for all i P K, and Ek`1
i “ Di

for all i P I. Similarly, define δpi : Epi Ñ Ep`1
i , for i P I and p “ 0, . . . , k, by letting

δ0
i “

#

δi, i P IzK;

idCi
, i P K;

and, for p ě 1,

δpi “

$

’

’

&

’

’

%

δi, i “ ip;

idDi
, i P IzK or i “ ij for some j ă p;

idCi
, i “ ij for some j ą p

For p “ 0, . . . , k, consider the functor

bIδ
p
i :

â

I

Epi Ñ
â

I

Ep`1
i .

Set pδp “ bIδ
p
i , and note that, by Lemma 3.3, each pδp is frank and that

bIδi “ pδk ˝ ¨ ¨ ¨ ˝ pδ0.

Fix ai P obpCiq, for i P K. By Theorem 3.1, it suffices to show that, for each

p ď k, pδp fulfills (P) at

(11)
`

zδp´1 ˝ ¨ ¨ ¨ ˝ pδ0
˘`

paiqK
˘

and pb1iqK1 ,
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where pb1iqK1 is an arbitrary object of obp
Â

I E
p
i q. This is clear for p “ 0 and, for

arbitrary p, when K 1 “ K as in this case there are no morphisms between the two

objects in (11). Now consider the case p ě 1 and K “ K 1. Set

pa1iqK “
`

zδp´1 ˝ ¨ ¨ ¨ ˝ pδ0
˘`

paiqK
˘

,

and note that

a1i “

#

ai, if i “ ij for j ě p;

δipaiq, if i “ ij for j ă p;

Let

R “ rM ,

where

M “
ź

iPK,i“ip

|hom
`

a1i, b
1
i

˘

|.

By our assumption of finiteness of hompa, bq for a, b P obpCiq and frankness of δi in

conjunction with Lemma 2.4 (iii), for all i P K, we see that M , and so also R, is

finite. Find c P Cip that witnesses property (P) for the functor δip at aip , bip with

R colors.

We claim that the object pciqK of
Â

I Ci with

ci “

#

b1i, if i “ ip;

c, if i “ ip;

witnesses property (P) for the functor pδp at pa1iqK and pb1iqK with r colors. Indeed,

let χ be an r-coloring of homppa1iqK , pciqKq. Define an R-coloring χ1 of hompaip , cq

by letting χ1phq be the sequence

(12)
`

χppfiqKq | fip “ h, fi P hompa1i, b
1
iq for i “ ip

˘

.

By our choice of c, there is g P hompbip , cq such that for f, f 1 P hompaip , bipq we

have

(13) δippfq “ δippf
1q ùñ χ1pg ¨ fq “ χ1pg ¨ f 1q.

Let pgiqK P homppb1iqK , pciqKq be such that gip “ g and, for i P K, i “ ip, gi is the

identity in hompb1i, ciq “ hompb1i, b
1
iq. It is now easy to check, from (12) and (13),

that for pfiqK , pf
1
iqK P hom

`

pa1iqK , pb
1
iqK

˘

,

pδp
`

pfiqK
˘

“ pδp
`

pf 1iqK
˘

ùñ χ
`

pgiqK ¨ pfiqK
˘

“ χ
`

pgiqK ¨ pf
1
iqK

˘

,

as required. (iii) It follows from Theorem 3.1 that �

3.3. Example—a frank functor for the Hales–Jewett Theorem. We give

now one concrete application of Theorem 3.4 that will be relevant for the proof of

the Hales–Jewett Theorem in Section 3.5. Recall the category P and the functor

BP from Section 2.4. From Lemma 2.5 and Theorem 3.4, we immediately get.

Corollary 3.5. The functor bNBP :
Â

N P Ñ
Â

N P is frank and fulfills (P).
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3.4. Modeling. We present a notion that allows property (P) to be transferred

from one functor to another. We aim to give this notion its natural generality. Two

related notions have already been proposed in the literature. One was the notion

of interpretability that was defined by the author in [18, Section 6.2], the other

one was the notion of pre-adjunction defined by Mašulović in [15]. Our notion of

modeling generalizes both these definitions.

Let C and D be categories. We define now the notion of cross-relatedness that

will play an auxiliary, but important, role in the definition of modeling.

Definition 3.6. Let c1, c2, c3 P obpCq and d1, d2, d3 P obpDq. We say that c1, c2, c3
and d1, d2, d3 are cross-related if there are functions

φ : hompc1, c2q ˆ hompd2, d3q Ñ hompd1, d2q,

ψ : hompd2, d3q Ñ hompc2, c3q,

ζ : hompd1, d3q Ñ hompc1, c3q

such that, for pf, gq P hompc1, c2q ˆ hompd2, d3q,

ζ
`

g ¨ φpf, gq
˘

“ ψpgq ¨ f.

Intuitively, one can see the notion of cross-relatedness as a way to define com-

position “g ¨ f” of morphisms f P hompc1, c2q by morphisms g P hompd2, d3q. Of

course, literally, such composition does not exist as hompc1, c2q is computed in C

while hompd2, d3q in D. But it can be defined in a generalized sense, in fact, in two

ways. In order to do it, one stipulates that there exist functions

φ : hompc1, c2q Ñ hompd1, d2q and ψ : hompd2, d3q Ñ hompc2, c3q.

that allow one to compute the composition “g ¨ f”, for f P hompc1, c2q and g P

hompd2, d3q, in two ways

g ¨ φpfq P hompd1, d3q and ψpgq ¨ f P hompc1, c3q.

To relate these two results one stipulates further that there is a function

ζ : hompd1, d3q Ñ hompc1, c3q

such that

ζ
`

g ¨ φpfq
˘

“ ψpgq ¨ f.

Being cross-related asserts that the above procedure can be implemented addition-

ally allowing φ to depend on g.

Observe that one can formulate the definition of cross-relatedness without invok-

ing ζ, as, to ensure that such a function ζ exists, it suffices to assume that g ¨φpg, fq

determines ψpg, fq ¨f , that is, that for all pf, gq, pf 1, g1q P hompc1, c2qˆhompd2, d3q,

(14) g ¨ φpf, gq “ g1 ¨ φpf 1, g1q ùñ ψpgq ¨ f “ ψpg1q ¨ f 1.

When it is important to remember how cross-relatedness of the triples c1, c2, c3
and d1, d2, d3 is witnessed, we say that c1, c2, c3 and d1, d2, d3 are cross-related

by pφ, ψq omitting ζ from the notation for the reasons explained above.

The notion of cross-relatedness defined here is new; but in [18], a version of it

with φpf, gq depending only on f is present implicitly; in [15] another version of it
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is implicit, where φ and ψ are defined globally as functions from C to D and from

D to C, respectively, and ζ is assumed to be equal to ψ.

Let γ : C Ñ E and δ : D Ñ F be functors, and let d1, d2 P obpDq and c1, c2 P

obpCq.

Definition 3.7. We say that γ at c1, c2 is modeled by δ at d1, d2 if, for each

d3 P obpDq, there is c3 P obpCq so that c1, c2, c3 and d1, d2, d3 are cross-related by

some pφ, ψq such that

(15) γpfq “ γpf 1q ùñ δ
`

φpf, gq
˘

“ δ
`

φpf 1, gq
˘

,

for all f, f 1 P hompc1, c2q and g P hompd2, d3q.

Now, we have the main result of this section on transferring property (P) through

modeling.

Theorem 3.8. Let γ be a functor with domain C. Let a, b P obpCq. If γ at a, b is

modeled by δ at d1, d2 with δ fulfilling (P) at d1, d2, then γ fulfills (P) at a, b.

Proof. Fix the number of colors r P N. Let δ be a functor with domain D such

that γ at a, b is modeled by δ at d1, d2 P obpDq with δ fulfilling (P) at d1, d2. Let

d3 P obpDq witness property (P) for δ at d1, d2 with r colors. Find c P obpCq given

for d3 by the definition of modeling. So a, b, c and d1, d2, d3 are cross-related by a

pair of functions pφ, ψq as in the definition of modeling.

We claim that c witnesses property (P) for γ at a, b with r colors. Let χ be an

r-coloring of hompa, cq. For f P hompa, bq and g P hompd2, d3q, define

(16) χ1
`

g ¨ φpf, gq
˘

“ χ
`

ψpgq ¨ f
˘

Note that χ1 is well defined since a, b, c and d1, d2, d3 are cross-related by pφ, ψq.

The function χ1 is defined on a subset of hompd1, d3q. We extend it to hompd1, d3q

in an arbitrary way to get an r-coloring χ1 of hompd1, d3q. Now, by our choice of

d3, there exists g P hompd2, d3q such that, for each h, h1 P hompd1, d2q,

δh “ δh1 ùñ χ1pg ¨ hq “ χ1pg ¨ h1q;

in particular, for so chosen g, for all f, f 1 P hompa, bq, we have

δ
`

φpf, gq
˘

“ δ
`

φpf 1, gq
˘

ùñ χ1
`

g ¨ φpf, gq
˘

“ χ1
`

g ¨ φpf 1, gq
˘

.

By our choice of δ, whose relationship with γ is given by (15), and the definition

(16) of χ1, the implication above yields, for all f, f 1 P hompa, bq,

γf “ γf 1 ùñ χ
`

ψpgq ¨ f
˘

“ χ
`

ψpgq ¨ f 1
˘

.

Thus, condition (P) for γ at a, b is proved. �

To transfer bounds on Ramsey degree, only the following version of modeling is

needed.

Definition 3.9. Let c1, c2 P obpCq and let d1, d2 P obpDq. We say that c1, c2 is R-

modeled by d1, d2 if for each d3 P obpDq there exits c3 P obpCq such that c1, c2, c3
and d1, d2, d3 are cross-related.
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With the above definition, one proves the following proposition, which strength-

ens [15].

Proposition 3.10. Let C,D be categories, and let a, b P obpCq and d1, d2 P obpDq.

If a, b is R-modeled by d1, d2, then

rdpa, bq ď rdpd1, d2q.

Proof. This proof is parallel to the proof of Theorem 3.8. Let k “ rdpd1, d2q. We

can assume that k ă 8. We show that rdpa, bq ď k. Fix r P N. Let now d3 P obpDq

witness rdpd1, d2q ď k for r-colorings. Let c P obpCq be provided from the definition

of R-modeling so that a, b, c and d1, d2, d3 are cross-related by pφ, ψq.

We claim that c chosen above witnesses rdpa, bq ď k for r-colorings. To check this

claim, let now χ be an r-coloring of hompa, cq. Define a coloring χ1 of hompd1, d3q

exactly as is done around formula (16) in the proof of Theorem 3.8. Now by our

choice of k, there is g P hompd2, d3q such that χ1 attains at most k colors on the set

tg ¨ f | f P hompd1, d2qu.

By the definition of χ1, we see that for so chosen g, χ attains at most k colors on

the set

tψpgq ¨ f | f P hompa, bqu,

as required. �

3.5. Example—the Hales–Jewett theorem. We fix k0 P N. Below, for a func-

tion f , impfq will stand for the set of all values of f .

We define a category HJk0 and its endofunctor Bk0 , which will be used to prove

the Hales–Jewett theorem.

Objects of HJk0 are as follows:

— natural numbers l P N;

— surjections v : r´k0, 0s Ñ rks, for some k P N.

In the remainder of this section, l, possibly with subscripts, will stand for objects of

HJk0 of the first kind above and v, possibly with subscripts, will stand for objects

of the second kind.

Morphisms of HJk0 will be appropriate functions. We describe them as follows:

— f P hompv, lq is a function f : rls Ñ impvq;

— g P hompl1, l2q is a function g : rl2s Ñ r´k0, l1s such that impgq Ě rl1s;

— there are no other morphisms except for the identities.

In order to define composition of morphisms in HJk0 , we need to introduce a

new piece of notation. For two functions h and h1 domains are disjoint intervals I

and I 1 of Z, respectively, let

h"h1

stand for the function whose domain is I Y I 1 and whose restrictions to I and I 1

are h ad h1, respectively. Now composition in HJk0 is defined as follows:

— for f P hompv, l1q and g P hompl1, l2q, let

g ¨ f “ pv"fq ˝ g.
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— for g1 P hompl1, l2q and g2 P hompl2, l3q, let

g2 ¨ g1 “
`

pidr´k0,0sq
"g1

˘

˝ g2.

Note that v"f and pidr´k0,0sq
"g1, whose domains are r´k0, l1s and r´k0, l2s, re-

spectively.

Before, we define the functor Bk0 : HJk0 Ñ HJk0 , we need to modify (3). For

n P N, n ě 1, let

n˜ 1 “ maxpn´ 1, 1q,

The functor Bk0 : HJk0 Ñ HJk0 is now defined on objects by:

— Bk0plq “ l;

— Bk0pvq “ min
`

v, maxpimpvqq˜ 1
˘

;

and on morphisms by:

— Bk0pgq “ g, for g P hompl1, l2q;

— Bk0pfq “ min
`

f, maxpimpvqq˜ 1
˘

, for f P hompv, lq.

Lemma 3.11. (i) Bk0 is a functor and it is frank.

(ii) The functor Bk0 : HJk0 Ñ HJk0 fulfills (P).

Proof. (i) is done by an easy check that we leave to the reader.

We now prove (ii). Note that it is clear that Bk0 fulfills (P) at pairs of objects

of the form pl1, l2q, pv1, v2q, and pl, vq. Indeed, the morphism sets between objects

in each of these pairs are empty with the exception of l1, l2 with l1 ď l2, in which

case, δk0 is equal to the identity map on hompl1, l2q.

It remains to check that Bk0 fulfills (P) at pairs of the form v, l P obpHJk0q. This

goal will be achieved by showing that Bk0 at v, l is modeled by bNB at a pair of

object of
Â

N P that we will choose below, and using Theorem 3.8 and Corollary 3.5.

Let k1 P N be such that impvq “ rk1s. So, at this point, we have fixed v, l, k1, and,

of course, k0.

We define the two objects of
Â

N P that will be used to model Bk0 at v, l. Let

a “ paiq
l
i“1 and b “ pbiq

l
i“1, where ai, bi P obpP q, for 1 ď i ď l, be defined by

ai “ pk1, 1q and bi “ p3, 2q.

So a, b are objects in
Â

N P . To see that Bk0 at v, l is modeled by
Â

N BP at a, b, we

fix an arbitrary object c P ob
`
Â

N P
˘

. We can assume that c “ pciq
l
i“1 for some

ci P obpP q with ci “ pmi, 2q for some mi P N, 1 ď i ď l. We need to find an object

l1 in HJk0 and functions

φ : hompv, lq Ñ hompa, bq and ψ : hompb, cq Ñ hom
`

l, l1
˘

such that

p ¨ φpfq “ p1 ¨ φpf 1q ñψppq ¨ f “ ψpp1q ¨ f 1,

for all p, p1 P hompb, cq, f, f 1 P hompv, lq.
(17)

Translating (FP) to the situation dealt with here, the function φ should be defined

on hompv, lq ˆ hompb, cq; but our φ will not depend on the second coordinate.
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We can define φ right away. For f P hompv, lq, set

φpfq “ pφ1pfq, . . . , φlpfqq,

where, for each 1 ď i ď l, φipfq : r3s Ñ rk1s is defined by letting

`

φipfq
˘

pjq “

$

’

’

&

’

’

%

k1, if j “ 1;

fpiq, if j “ 2;

maxp1, k1 ´ 1q, if j “ 3.

Note that φipfq P hompai, biq, and, therefore, φpfq P hompa, bq.

With the definition of φ in hand, we state (17) in more basic terms. Note that

each p P hompb, cq is of the form

(18) p “ pp1, . . . , plq,

where pi is in hompai, biq, that is, it is an non-decreasing surjections such that

imppiq “ r3s and domppiq “ rmis, for each 1 ď i ď l. Similarly, we represent

p1 P hompb, cq as pp11, . . . , p
1
lq. Now, (17) becomes

´

φipfq ˝ pi “ φipf
1q ˝ p1i, for 1 ď i ď l

¯

ñ f ˝ ψppq “ f 1 ˝ ψpp1q

for all p, p1 P hompb, cq, f, f 1 P hompv, lq.
(19)

It remains to define l1 and ψ for which (19) holds. Set

l1 “ m1 ` ¨ ¨ ¨ `ml.

For p as in (18), define g “ ψppq P hompl, l1q as follows. If j P rm1 ` ¨ ¨ ¨ `mls, let i

be the unique natural number such that

m1 ` ¨ ¨ ¨ `mi´1 ă j ď m1 ` ¨ ¨ ¨ `mi.

Then if pipj ´ pm1 ` ¨ ¨ ¨ `mi´1qq “ 2, let

gpjq “ i,

otherwise, let gpjq be a number in r´k0, 0s such that

vpgpjqq “ k1, if pipj ´ pm1 ` ¨ ¨ ¨ `mi´1qq “ 1,

and

vpgpjqq “ maxp1, k1 ´ 1q, if pipj ´ pm1 ` ¨ ¨ ¨ `mi´1qq “ 3.

With the definitions above, it is easy to check that, for p P hompb, cq represented

as in (18) and for f P hompv, lq, we have

v"pφ1pfq ˝ p1q
" ¨ ¨ ¨"pφlpfq ˝ plq “ f ˝ ψppq,

from which (19) follows immediately.

To finish the proof of (FP), it remains to show that for f, f 1 P hompv, lq,

Bk0f “ Bk0f
1 ñ

`
â

N
BP

˘`

φpfq
˘

“
`
â

N
BP

˘`

φpf 1q
˘

,

which amount to proving

Bk0f “ Bk0f
1 ñ BP

`

φipfq
˘

“ BP
`

φipf
1q
˘

, for i “ 1, . . . , l.

�
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The following is the Hales–Jewett theorem, see [9] and [16].

Corollary 3.12. For each k, l P N and r P N, there exists m P N such that for

each r-coloring of all functions from rms to r´k, 0s, there is g : rms Ñ r´k, ls, with

impgq Ě rls, such that the set

tf ˝ g | f : r´k, ls Ñ r´k, 0s, f æ r´k, 0s “ idr´k,0su

is monochromatic.

Proof. Fix k, l P N. Consider the category HJk and the objects idk and l in it.

Note that the conclusion of the corollary follows from rdpidk, lq “ 1. To prove this

equality, observe that the set

pBk ˝ ¨ ¨ ¨ ˝ Bkq
`

hompidk, lq
˘

,

where Bk is composed k´1 times, has one element. By Lemma 3.11 combined with

Corollary 3.2(i) for ∆ “ tBku, the equality rdpidk, lq “ 1 follows immediately. �

With some additional routine work, the methods used to prove Corollary 3.12

can be adapted to proving more general versions of the Hales–Jewett theorem as in

[18, Section 8.1] or [21, Lemma 3.3]. In these generalizations, one obtains concrete

Ramsey statements, in which rdpa, bq may be strictly bigger than 1.

4. Proving condition (P)

The goal of this section is to formulate a local version of condition (P) and prove

that, in most circumstances, it implies (P).

4.1. Condition (FP). We state the local version, we call (FP), of the pigeonhole

principle (P). In applications, it is often easier to check directly (FP) than (P).

Let δ : C Ñ D be a functor. Recall the statement of (P) for a functor δ from

Definition 2.1. Note that the property of g P hompb, cq in condition (P) can be

rephrased as follows:

for each f 1 P δ
`

hompa, bq
˘

, χpg ¨ fq is constant for f P hompa, bq with δf “ f 1.

Above, g is chosen first and independently of f 1. This feature is relaxed when

passing to (FP) from (P), namely, in (FP) it suffices to find g that depends on f 1.

The price of this relaxation is included in the second point of condition (FP). It

has to do with controlling the behavior of δg in a suitable way.

It will be convenient to introduce the following piece of notation. Let C be a

category C and δ a functor defined on C. For a, b P obpCq and h P δ
`

hompa, bq
˘

,

let

hompa, bqh “ tf P hompa, bq | δf “ hu.

Definition 4.1. We say that δ fulfills (FP) at a, b P obpCq, if for r P N and a

finite non-empty set s Ď δ
`

hompa, bq
˘

the following condition holds:

there exist c P obpCq, f 1 P s, and g1 P δ
`

hompb, cq
˘

such that for each r-coloring χ

of hompa, cq, there exists g P hompb, cq with

— g ¨ hompa, bqf 1 χ-monochromatic and

— pδgq ¨ e “ g1 ¨ e, for each e P s.
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As with condition (P), we say that δ fulfills (FP) at a P obpCq, if it fulfills

(FP) at a, b for all b P obpCq; and we simply say that δ fulfills (FP), if it fulfills

(FP) at a, b for all a, b P obpCq.

4.2. Example—a frank functor with (FP) for Ramsey’s Theorem. Recall

Example 3 from Section 2.4. We check condition (FP) for BR from this example.

Lemma 4.2. BR : RÑ R fulfills pFPq.

Proof. This proof amounts to an application of the standard pigeonhole principle.

Fix r P N. Let k, l be two objects in R, and let H “ s Ď BR
`

hompk, lq
˘

. To

avoid trivial cases, we can assume that hom
`

k, l
˘

has at least two elements and

that k ě 1, therefore, 1 ď k ă l.

For the two objects k and l and the number of colors r, we need to find, in the

notation of (FP), and object c and two morphisms f 1 and g1. First, we define the

object by letting

m “ pr ` 1ql P obpRq.

Next, we define the two objects. Pick px1, l ´ 1q P BR
`

hompk, lq
˘

so that

(20) px1, l ´ 1q P s and maxx1 “ maxtmaxx2 | px2, l ´ 1q P su,

and let

(21) py1,m´ 1q “ prl ´ 1s,m´ 1q P BR
`

hompl,mq
˘

.

By convention, if k “ 1, we interpret the above definition to give x1 “ H. We

claim that this choice of the object m and the morphisms px1, l´ 1q and py1,m´ 1q

ensures that (FP) are satisfied.

To prove this claim, let χ be an r-coloring of hompk,mq. For i P rl,ms, set

xi “ px
1 Y tiu,mq P hompk,mq,

and consider the r-coloring of rl,ms given by

(22) rl,ms Q iÑ χpxiq.

Set

p “ maxx1 ď l ´ 1,

with p “ 0, if x1 “ H, by convention. Note that, by the choice of m, there is a

subset I of rl,ms of size l´p on which the r-coloring (22) is constant, which means

that χ is constant on xi as i varies over I. Define

y “ prps Y I,mq P hompl,mq.

This is the morphism g in the notation from (FP). We need to check that y satisfies

the two points displayed in (FP).

For px, lq P hompk, lq with BRpx, lq “ px
1, l ´ 1q, we have

y ¨ px, lq “ xi, for some i P I.
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Therefore, χpy ¨ px, lqq is constant for px, lq P hompk, lq with BRpx, lq “ px
1, l ´ 1q,

and the first point in (FP) is checked for y. To see the second point, note that, for

each px2, l ´ 1q P s, we have

BRy ¨ px2, l ´ 1q “ px2,m´ 1q “ py1,m´ 1q ¨ px2, l ´ 1q,

using (20) the get the first equality and (20) and (21) to get the second one. Thus,

(FP) follows. �

4.3. Condition (FP) implies (P). The following theorem is the main result of

Section 4. It shows that under mild assumptions the local condition (FP) implies

(P). In concrete situations, (FP) is usually much easier to check than (P).

Theorem 4.3. Let δ : C Ñ D be a functor, and let a P obpCq. If δ fulfills pFPq at

a, then δ fulfills pPq at a, b for each b P obpCq with δ
`

hompa, bq
˘

finite.

Proof. Fix a functor δ and an object a. In order to prove that δ fulfills (P) at a, b,

we fix r ą 0 and b P obpCq with finite δ
`

hompa, bq
˘

. Set n “ |δ
`

hompa, bq
˘

|. By

recursion, we construct

— ck P obpCq, for 0 ď k ď n;

— g1k P δ
`

hompck´1, ckq
˘

, for 1 ď k ď n;

— f 1k P δ
`

hompa, bq
˘

, for 1 ď k ď n.

Note that we enumerate the ck-s starting with k “ 0 and the g1k-s and f 1k-s starting

with k “ 1. These objects will have the following properties for 0 ď k ď n, where

we note that the first point in (c) makes sense as, by the conditions above, we have

that g1k´1 ¨ ¨ ¨ g
1
1 ¨ f

1
k P δ

`

hompa, ck´1q
˘

.

(a) c0 “ b;

(b) f 1k “ f 1i for all i ă k;

(c) for each r-coloring χ of hompa, ckq, there exists g P hompck´1, ckq such that

— χ is constant on g ¨
`

hompa, ck´1qg1k´1¨¨¨g
1
1¨f

1
k

˘

;

— pδgq ¨ g1k´1 ¨ ¨ ¨ g
1
1 ¨ f

1 “ g1k ¨ g
1
k´1 ¨ ¨ ¨ g

1
1 ¨ f

1 for all f 1 P δ
`

hompa, bq
˘

with

f 1 R tfi | i ď ku.

To start the construction, we set c0 “ b. The conditions above for k “ 0 hold with

(b) and (c) being vacuously true. Assume that 0 ă k ď n and the construction has

been carried out up to stage k ´ 1. Consider the finite set

s “ tg1k´1 ¨ ¨ ¨ g
1
1 ¨ f

1 | f 1 P δ
`

hompa, bq
˘

ztf 1i | i ă kuu.

By our choice of g1i for 1 ď i ă k and the assumption that k ď n, we have that

H “ s Ď δ
`

hompa, ck´1q
˘

.

Now condition pFPq applied to a, ck´1, and the set s above allows us to pick

ck P obpCq, f 1k P δ
`

hompa, bq
˘

, and g1k P δ
`

hompck´1, ckq
˘

so that conditions (b)

and (c) hold. The construction has been carried out.

Observe that by the choice of n and condition (b), we have

(23) δ
`

hompa, bq
˘

“ tf 1k | 1 ď k ď nu.
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We claim that c “ cn witnesses that δ fulfills pPq at a, b with r colors; that is,

for each r-coloring χ of hompa, cq, there is g P hompb, cq such that, for h1, h2 P

hompa, bq, we have

(24) δh1 “ δh2 ùñ χpg ¨ h1q “ χpg ¨ h2q.

In order to prove the statement above, fix an r-coloring χ of hompa, cq. We

recursively produce

gn P hompcn´1, cnq, . . . , g1 P hompc0, c1q

starting with gn and ending with g1 as follows. Having produced gn, . . . , gk`1, we

consider the r-coloring of hompa, ckq given by

hompa, ckq Q f Ñ χpgn ¨ ¨ ¨ gk`1 ¨ fq.

By (c), we get gk P hompck´1, ckq such that

(25) χpgn ¨ ¨ ¨ gk`1 ¨ gk ¨ fq is constant for f P hompa, ck´1qg1k´1¨¨¨g
1
1¨f

1
k

and

(26) pδgkq ¨ g
1
k´1 ¨ ¨ ¨ g

1
1 ¨ f

1
j “ g1k ¨ g

1
k´1 ¨ ¨ ¨ g

1
1 ¨ f

1
j , for j ą k.

Now we show that

g “ gn ¨ ¨ ¨ g1 P hompb, cq

witnesses that the implication in (24) holds. Let h1, h2 P hompa, bq be such that

δh1 “ δh2. This common value can be taken to be f 1k for some 1 ď k ď n by (23).

For i “ 1, 2, an iterative application of condition (26) gives

g1k´1 ¨ g
1
k´2 ¨ ¨ ¨ g

1
1 ¨ f

1
k “ δgk´1 ¨ δgk´2 ¨ ¨ ¨ δg1 ¨ δhi

“ δpgk´1 ¨ gk´2 ¨ ¨ ¨ g1 ¨ hiq,

and so

gk´1 ¨ gk´2 ¨ ¨ ¨ g1 ¨ hi P phompa, ck´1qqg1k´1¨¨¨g
1
1¨f

1
k
,

which in light of (25) implies that

χ
`

gn ¨ ¨ ¨ gk ¨ pgk´1 ¨ ¨ ¨ g1 ¨ h1q
˘

“ χ
`

gn ¨ ¨ ¨ gk ¨ pgk´1 ¨ ¨ ¨ g1 ¨ h2q
˘

.

Thus, (24) is proved. �

The following corollary follows immediately from Corollary 3.2(i) and Theo-

rem 4.3.

Corollary 4.4. Let ∆ be a family of frank endofunctors of C. Let a P obpCq.

Assume that each δ P ∆ fulfills (FP) at a and hompa, bq is finite for all b P obpCq.

Then, for all b P obpCq,

rdpa, bq ď mint
ˇ

ˇδ
`

hompa, bq
˘
ˇ

ˇ | δ P x∆yu.
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4.4. Example—Ramsey’s Theorem and its product. As an illustration, we

derive now the classical Ramsey theorem and the product Ramsey theorem from

the general results established earlier.

Corollary 4.5. Given k, l P N, for each r P N, there exists m P N such that, for

each r-coloring of all k-element subsets of rms, there exists b Ď rms of size l such

that all k-element subsets of b get the same color.

Proof. Since, by Lemma 4.2, BR fulfills (FP), and hompk, lq is finite, for all k, l P

obpRq, it follows from that ∆ “ tBRu satisfies all the assumptions of Corollary 4.4.

Thus, we get the conclusion after noticing that the set

pBR ˝ ¨ ¨ ¨ ˝ BRq
`

hompk, lq
˘

has only one element (its only element is the empty set), where BR is composed k

times. �

Corollary 4.6. Let r P N and let k1, . . . , kl and p1, . . . , pl be natural numbers.

There exist natural numbers q1, . . . , ql such that for each r-coloring of the set

tpa1, . . . , alq | ai Ď rqis, |ai| “ ki, for i ď lu

there exist b1 Ď rq1s, . . . , bl Ď rqls with |bi| “ pi, for each i ď l, and such that the

set

tpa1, . . . , alq | ai Ď bi, |ai| “ ki, for i ď lu

is monochromatic.

Proof. By Lemma 4.2, BR fulfills (FR). Since hompk, lq is finite, for all k, l P obpRq,

Theorem 4.3 implies that BR fulfills (P). Thus, by Theorem 3.4, bNBR :
Â

NR Ñ
Â

NR fulfills (P). Now, the conclusion follows from Corollary 3.2(i). �

4.5. Example—Fouché’s Ramsey theorem for trees. We present here one

more elaborate example of using the general theory. We derive from it Fouché’s

Ramsey theorem for trees as proved in [4].

First, we collect basic definitions concerning trees and a type of morphism be-

tween them. By a tree we understand a finite, non-empty partial order such that

each two elements have a common predecessor and the set of predecessors of each

element is linearly ordered. A leaf is a maximal element of a tree. By convention,

we regard every node of a tree as one of its own predecessors and as one of its own

successors.

Each tree T carries a binary function ^T that assigns to each v, w P T the largest

element v^T w of T that is a predecessor of both v and w. For a tree T and v P T ,

let

imT pvq

be the set of all immediate successors of v, and we do not regard v as one of

them. Let

htT pvq

be the cardinality of the set of all predecessors of v (including v), and let

htpT q “ maxthtT pvq : v P T u.
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For a tree T , let

brpT q

be the maximum of cardinalities of imT pvq for v P T .

A tree T is called ordered if for each v P T there is a fixed linear order of

imT pvq. Such an assignment allows us to define the lexicographic linear order ďT
on all the nodes of T by specifying that v ďT w precisely when

— v is a predecessor of w, or

— v is not a predecessor of w, and w is not a predecessor of v, and the

predecessor of v in imT pv^wq is less than or equal to the predecessor of w

in imT pv ^ wq in the given order on imT pv ^ wq.

A height preserving embedding f from an ordered tree S to an ordered tree

T is an injective function f : S Ñ T such that

— f is order preserving between ďS and ďT ,

— fpv ^S wq “ fpvq ^T fpwq, for v, w P S, and

— htSpvq “ htT pfpvqq, for v P S.

Note that preservation of order by f is equivalent to saying that for every v P S

and all w1, w2 P imSpvq with w1 ďS w2, we have fpw1q ďT fpw2q in imT pfpvqq.

Theorem 4.7 (Fouché [4]). Let r P N and let S and T be ordered trees. There

is an ordered tree V such that htpV q “ htpT q and for each r-coloring of all height

preserving embeddings from S to V there is a height preserving embedding g : T Ñ V

such that the set

tg ˝ f : f a height preserving embedding of S to T u

is monochromatic.

We define a category and an endofuctor on it that are appropriate for the theorem

above. Consider the category T whose objects are ordered trees. Given S, T P

obpT q, with htpSq “ htpT q, hompS, T q consists of all height preserving embeddings

from S to T . There are no other morphisms in T ; in particular, if htpSq “ htpT q,

then hompS, T q “ H.

We now define a functor B˚ : T Ñ T . Given T P obpT q, put

B˚T “

#

tv P T : htpvq ă htpT qu, if htpT q ą 1;

T, if htpT q “ 1.

We will write T˚ for B˚T . Now, define the functor B˚ on morphisms of T by letting,

for f : S Ñ T ,

B˚f “ f æ S˚.

Lemma 4.8. B˚ is a frank functor.

Proof. It is clear that B˚ is a functor as for morphisms f : S Ñ T and g : T Ñ V

we have fpS˚q Ď T˚ and hence

B˚pg ˝ fq “ pg ˝ fq æ S˚ “ g ˝ pf æ S˚q “ pg æ T˚q ˝ pf æ S˚q “ pB˚gq ˝ pB˚fq.
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Now, to check that B˚ is frank, we fix two objects of T , that is, two ordered trees

S and T 1. We need to find T P obpT q such that T˚ “ T 1 and B˚
`

hompS, T q
˘

“

hompS˚, T˚q. If htpSq “ htpT 1q`1, then any T P T with T˚ “ T 1 works, since then

hompS˚, T˚q “ H and hompS, T q “ H. So we assume that htpSq “ htpT 1q` 1. We

need to find T P obpT q such that

— T˚ “ T 1 and

— for each height preserving embedding f 1 : S˚ Ñ T˚, there is a height pre-

serving embedding f : S Ñ T such that f 1 “ f æ S˚.

One defines T so that htpT q “ htpSq, T˚ “ T 1, and, for each leaf w of T 1,

|imT pwq| “ brpSq.

One then linearly orders T by extending the linear order on T 1 in an arbitrary

way as long as the resulting order makes T into an ordered tree. It is then clear

that each height preserving embedding f 1 : S˚ Ñ T 1 extends to a height preserving

embedding f : S Ñ T by mapping elements of imSpvq, for each leaf v of S˚, to

imT pf
1pvqq in an injective and order preserving fashion. �

Proof of Theorem 4.7. To obtain the conclusion of the theorem, one needs to check

that rdpS, T q ď 1 for all S, T P obpT q. Note that the set

pB˚ ˝ ¨ ¨ ¨ ˝ B˚q
`

hompS, T q
˘

has at most one element, where B˚ is composed htpSq ´ 1 many times. Indeed, if

htpSq “ htpT q, then hompS, T q “ H; if htpSq “ htpT q, then this set contains only

the unique function from a one-node tree to a one-node tree. Thus, by Lemma 4.8

and Corollary 4.4, it will suffice to check that B˚ fulfills (FP) at each pair of objects

of T . So fix r P N, S, T P obpT q, and H “ s Ď hompS˚, T˚q. Non-emptiness of

s implies that htpSq “ htpT q; we call this common height h. We need to produce

V P obpT q with htpV q “ h and f 1 P s and g1 P hompT˚, V ˚q so that the conclusion

of (FP) holds for these choices.

We let f 1 P s be arbitrary and g1 be equal to the identity map on T˚. The tree

V will be chosen so that V ˚ “ T˚. It suffices to specify, for each leaf w of T˚ with

htT˚pwq “ h ´ 1, the number of elements in imV pwq. If w is not of he form f 1pvq

for a leaf v of S˚, let imV pwq be empty. Now, let v1, . . . , vl list all the leaves of S˚

of height h´ 1; since htpSq “ h such leaves exist. Put

Ki “ imSpviq and ki “ |Ki|, for 1 ď i ď l,

and also

Pi “ imT

`

f 1pviq
˘

and pi “ |Pi|, for 1 ď i ď l.

Let the natural numbers qi, for 1 ď i ď l, be gotten from Corollary 4.6 for the

sequences pkiq and ppiq, and the number of colors r. Let Qi “ imV

`

f 1pviq
˘

have

size qi. This procedure defines V .

Now, it is enough to do the following: for an r-coloring χ of hompS, V q, find a

height preserving embedding g : T Ñ V such that

(i) χpg ˝ fq is constant on the set of height preserving embeddings f : S Ñ T

with f æ S˚ “ f 1;
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(ii) g æ T˚ “ idT˚ .

We fix χ as above. For a tuple paiq such that ai Ď Qi and |ai| “ ki, for each

1 ď i ď l, define fpaiq : S Ñ V by letting

fpaiq æ S
˚ “ f 1;

fpaiq æ Ki : Ki Ñ ai the unique order preserving function.

Note that fpaiq is a height preserving embedding. Further note that
´

f P hompS, T q, f æ S˚ “ f 1 and g P hompT, V q, g æ T˚ “ idT˚
¯

ùñ

´

g ˝ f “ fpaiq, where ai “ g
`

fpKiq
˘

¯

.
(27)

Color tuples paiq such that ai Ď Qi and |ai| “ ki by letting

χ1
`

paiq
˘

“ χpfpaiqq.

By our choice of of pqiq, there are sets bi Ď Qi with |bi| “ pi and such that all tuples

paiq with ai Ď bi get the same color with respect to χ1. Let g : T Ñ V be defined

by letting

g æ T˚ “ idT˚ ;

g æ Qi : Qi Ñ bi the unique order preserving function.

By (27), for each f : S Ñ T with f æ S˚ “ f 1, we have that

g ˝ f “ fpaiq,

for some paiq with ai Ď bi and |ai| “ ki. Thus, χpg ˝ fq is constant, as required by

(i). Obviously, g fulfills (ii). �
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