
DUAL RAMSEY THEOREM FOR TREES

S LAWOMIR SOLECKI

Abstract. The classical Ramsey theorem was generalized in two major ways:

to the dual Ramsey theorem, by Graham and Rothschild, and to Ramsey

theorems for trees, initially by Deuber and Leeb. Bringing these two lines

of thought together, we prove the dual Ramsey theorem for trees. Galois

connections between partial orders are used in formulating this theorem, while

the abstract approach to Ramsey theory, we developed earlier, is used in its

proof.

1. Introduction

A rich theory of Ramsey results has been developed since the publication of

Ramsey’s original paper. (For an introduction to the subject see [13].) The discov-

ery in [9] of close connections between Ramsey Theory and Topological Dynamics

gave rise to substantial new advances in the theory. (The reader may consult [14]

for a survey.) The present paper was motivated in equal measure by these recent

developments and by the internal logic of Ramsey Theory as it relates to the idea

of duality. (For a different aspect of duality in Ramsey Theory, see [18].)

The Dual Ramsey Theorem was proved by Graham and Rothschild in [6]. It

was then realized that the dual version was, in fact, a strengthening of Ramsey’s

original result. Another independent line of generalizations of Ramsey’s theorem

was initiated by Deuber [2] and Leeb, see [7]. These authors generalized Ramsey’s

theorem from linear orders to trees. Further Ramsey theorems for trees were found

in [4], [8], [11] (see also [17]), and [20]. (The paper [20] provides a uniform treatment

of these results.)

The aim of the present paper is to bring together these two lines of development

by proving the Dual Ramsey Theorem for Trees as announced in [21]. This theorem

is a common strengthening of two classical results—Leeb’s Ramsey theorem for trees

and Graham and Rothschild’s Dual Ramsey Theorem. It should be noted that the

first one of these theorems is formulated in terms of copies of trees, the second one

in terms of partitions of finite initial segments of natural numbers. So the first

challenge is to find objects that generalize both: copies of trees and partitions.

To this end, the two classical Ramsey theorems are restated in terms of functions.

Their common generalization is then formulated using functions that turn out to

come from appropriately modified Galois connections in the sense of Ore [15], [5].

(The association of duality in Ramsey theory with Galois connections is new and
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may be worth further investigation.) This generalization, which is the main theorem

of the paper, is then proved with the use of our abstract approach to Ramsey theory

from [19].

Aside from the theoretical considerations, the motivation for our work comes, in

a vague sense, from the results in [1] and [12, Section 3]. Additionally, one should

mention independent related work [22] containing a dual form the Halpern–Läuchli

theorem.

In Section 2, we give all the required definitions, the statement of our main

result, Theorem 2.3, and its context. We also prove there that the main theorem

strengthens the two classical Ramsey results mentioned above. In Section 3, we

outline the fragment of the abstract Ramsey theory developed in [19] that is needed

for our proof and we state the appropriate versions of the Hales–Jewett theorem

that will be used. In Section 4, we give a proof of the main result; its principal

technical argument is contained in Section 4.3.

2. The theorem and its context

We start this section with collecting the basic notions concerning trees. Then

we state our main definition of rigid surjections between trees and formulate the

main result—the Ramsey theorem for rigid surjections, which we call the Dual

Ramsey Theorem for Trees. We follow it with a restatement of two classical Ramsey

theorems—Leeb’s Ramsey theorem for trees and Graham and Rothschild’s Dual

Ramsey Theorem. We show that rigid surjections between trees are objects that

are more general than the objects in these two classical Ramsey statements, and

we give an argument that the Dual Ramsey Theorem for Trees is their common

generalization. We finish this section with explaining how rigid surjections fit in

the larger framework of Galois connections.

2.1. Ordered trees. By a tree T we understand a finite, partially ordered set

with a smallest element, called root, and such that the set of predecessors of each

element is linearly ordered. So in this paper, all trees are non-empty and finite. By

convention, we regard every node of a tree as one of its own predecessors and as

one of its own successors. We denote the tree order on T by

vT .

Each tree T carries a binary function ∧T that assigns to each v, w ∈ T the largest

with respect to vT element v ∧T w of T that is a predecessor of both v and w.

For a tree T and v ∈ T , let imT (v) be the set of all immediate successors of v, and

we do not regard v as one of them. (We will occasionally suppress the subscripts

from various pieces of notation introduced above if we deem them clear from the

context.) A tree T is called ordered if for each v ∈ T there is a fixed linear order of

im(v). Such an assignment allows us to define the lexicographic linear order

≤T

on all the nodes of T by stipulating that v ≤T w if v is a predecessor of w and, in

case v is not a predecessor of w and w is not a predecessor of v, that v ≤T w if
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the predecessor of v in im(v ∧ w) is less than or equal to the predecessor of w in

im(v ∧ w) in the given order on im(v ∧ w).

2.2. The notion of rigid surjection. The following definition is essentially due

to Deuber [2]. Let S and T be ordered trees. A function e : S → T is called a

morphism if

(i) for v, w ∈ S,

e(v ∧S w) = e(v) ∧T e(w);

(ii) e is monotone between ≤S and ≤T , that is, for v, w ∈ S,

v ≤S w =⇒ e(v) ≤T e(w);

(iii) e maps the root of S to the root of T .

An embedding is an injective morphism.

Here is the definition of functions for which our main theorem will be proved.

As explained in Section 2.5, it comes from the notion of Galois connection.

Definition. Let S, T be ordered trees. A function f : T → S is called a rigid

surjection provided there exists a morphism e : S → T such that

(2.1) f ◦ e = idS and e ◦ f vT idT .

The last condition in the definition means that e(f(w)) vT w for each w ∈ T .

Note that f need not be a morphism. It is clear from the definition that f is

surjective and e injective, so e is an embedding.

We note that in the above situation f determines e, that is, if f : T → S and

e1, e2 are morphisms from S to T such that (2.1) holds for each of them, then

e1 = e2. (This means that e can be defined from f ; indeed, if f : T → S is a rigid

surjection, then e : S → T is given by e(v) =
∧

T f
−1(v).) We call this unique e the

injection of f .

We register the following easy to prove lemma.

Lemma 2.1. Let f : T → S and g : V → T are rigid surjections, then so is f ◦g. In

fact, if d and e are the injections of f and g, respectively, then e ◦ d is the injection

of f ◦ g.

We also have the following lemma.

Lemma 2.2. Let S and T be ordered trees. Let e : S → T be an embedding. There

exits a rigid surjection f : T → S such that e is the injection of f .

Proof. For w ∈ T , define f(w) to be the vS-largest v ∈ S such that e(v) vT w.

We leave checking that this f works to the reader. �

Observe that, in general, there are many rigid surjections with the same injection.
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2.3. The main theorem. By a b-coloring, for a natural number b > 0, we un-

derstand a coloring with b colors. The following result is the main theorem of the

paper.

Theorem 2.3. Let b be a positive integer. Let S, T be ordered trees. There exists

an ordered tree U such that for each b-coloring of all rigid surjections from U to S

there is a rigid surjection g0 : U → T such that

{f ◦ g0 | f : T → S a rigid surjection}

is monochromatic.

2.4. Ramsey theorem for trees and Dual Ramsey Theorem as conse-

quences of Theorem 2.3. An image of a tree S under an embedding from S

to T is called a copy of S in T . The following theorem is due to Leeb, see [7].

(Sometimes, the theorem below is formulated with a weaker definition of embed-

ding, in which condition (iii) is omitted. The two versions are easily derivable from

each other.)

Given a positive integer b and ordered trees S and T , there is an ordered tree U

such that for each b-coloring of all copies of S in U there is a copy T ′ of T in U

such that all copies of S in T ′ get the same color.

We chose to formulate this theorem directly in terms of embeddings.

Theorem 2.4 (Leeb). Let b be a positive integer. Let S and T be ordered trees.

There exists an ordered tree U such that for each b-coloring of all embeddings from

S to U , there exists an embedding e0 : T → U such that

{e0 ◦ d | d : S → T an embedding}

is monochromatic.

To derive the above theorem from Theorem 2.3, given S and T and the number

of colors, let U be the ordered tree from Theorem 2.3. This U works also for

Theorem 2.4. Indeed, given a coloring of all embeddings from S to U , we assign

a rigid surjection from U to S the color of its injection. Theorem 2.3 produces a

rigid surjection g0 : U → T . Let e0 be the injection of g0. It is easy to check, using

Lemma 2.2, that the conclusion of Theorem 2.4 holds for it.

For a natural number n ∈ N, let [n] stand for {1, . . . , n}. We allow 0 as a member

of N, in which case [0] = ∅. The following is the dual Ramsey theorem of Graham

and Rothschild [6].

Given a positive integer b and positive integers k, l there exists a positive integer

m such that for each b-coloring of all k element partitions of [m] there exists an l

element partitions Q of [m] such that all k element partitions of [m] that are coarser

than Q have the same color.

It was noticed already by Prömel and Voigt [16] that a restatement of the dual

Ramsey theorem in terms of functions was possible. They called a function f : [n]→
[m] a rigid surjection if f is surjective and, for each y ∈ [n],

f(y) ≤ 1 + max
x<y

f(x)
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with the convention that max over the empty set is 0. Note that sets of the form

[n] for n ∈ N with their natural inequality relation and the unique ordering of the

immediate successors of each vertex are ordered trees. In fact, the tree relation

and v[n] and the linear order relation ≤[n] are equal. By treating [m] and [n] as

ordered trees f : [n] → [m] is a rigid surjection according to the above definition

precisely when it is a rigid surjection according to our definition of rigid surjection

between trees. Indeed, f : [n]→ [m] that is a rigid surjection according to the above

definition, the function e : [m] → [n] given by e(x) = min f−1(x) witnesses that f

is a rigid surjection according to our definition.

Theorem 2.5 (Graham–Rothschild). Let b be a positive integer. Given k and l,

there exists m such that for each b-coloring of all rigid surjections from [m] to [k]

there is a rigid surjection g0 : [m]→ [l] such that

{f ◦ g0 | f : [l]→ [k] a rigid surjection}

is monochromatic.

To see how Theorem 2.5 follows from Theorem 2.3, apply Theorem 2.3 to the

ordered trees S = [k] and T = [l] obtaining an ordered tree U . Then U with its

linear ordering ≤U is isomorphic as a linear order to some [m]. For this m the

conclusion of Theorem 2.5 holds. This is immediate once we observe that a rigid

surjection from U to [l] is also a rigid surjection from the linear order (U,≤U ), that

is from [m], to [l].

2.5. The context for rigid surjections—Galois connections. Let (S,vS) and

(T,vT ) be two partial orders, not necessarily trees, for now. A pair (f, e) is called

a Galois connection if f : T → S, e : S → T , and both

(2.2) f ◦ e vS idS and e ◦ f vT idT

Galois connections in their abstract form were first defined by Ore in [15], and

we essentially followed the original definition. (Usually both e and f are assumed

to be monotone, but we will need the broader notion here.) For a comprehensive

treatment see [5]. As already noticed by Ore, of particular importance are Galois

connections for which equality holds in one of the inequalities in (2.2); such Galois

connections are called perfect in [15]. So we are interested in Galois connections

fulfilling

(2.3) f ◦ e = idS and e ◦ f vT idT .

Galois connections with (2.3) are often called embedding–projection pairs. They

are important in denotational semantics of programming languages, see for example

[3], and are relevant in some topological considerations, see for example [10].

Now we consider (2.3) and assume that S and T are ordered trees.

Assuming that f is a morphism puts restrictions on e; it is easy to see that it

implies that e is a morphism as well. Moreover, f determines e and e determines

f . So formulating the Ramsey statement for this kind of functions, we get Leeb’s

Ramsey result; if stated for e, it takes the form of Theorem 2.4, if stated for f , it

takes the equivalent surjective form.
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On the other hand, e being a morphism does not put severe restrictions on f ,

in particular, it does not imply that f is a morphism. In this case, f is what we

called a rigid surjection. The Ramsey theorem stated for such functions f is our

main result.

3. The tools: abstract Ramsey theory and pigeonhole lemmas

Theorem 2.3 will be proved using the abstract approach to Ramsey theory de-

veloped in [19]. In Sections 3.1 and 3.3, we present a fragment of this approach

that is sufficient for our goals here. The abstract Ramsey theorem is stated as

Theorem 3.1. The main difficulty in applying this theorem in concrete situations is

deducing the abstract pigeonhole condition (LP). To achieve this in our situation

in later sections, we will need certain known Hales–Jewett–type results, which we

collect in Section 3.4.

3.1. Normed composition spaces. Let A be a set. Assume we are given a partial

function from A× A to A:

(a, b)→ a · b,
which is associative, that is, for a, b, c ∈ A if a · (b · c) and (a · b) · c are both defined,

then

(3.1) a · (b · c) = (a · b) · c.

We assume we also have a function ∂ : A→ A and a function | · | : A→ L, where L

is equipped with a partial order ≤.

A structure as above is called a normed composition space if the following con-

ditions hold for a, b, c ∈ A:

(i) if a · b and a · ∂b are defined, then

∂(a · b) = a · ∂b ;

(ii) |∂a| ≤ |a|;
(iii) if |b| ≤ |c| and a · c is defined, then a · b is defined and |a · b| ≤ |a · c|.
The operation · is called a multiplication. We call ∂ a truncation and | · | a norm.

Given a, b ∈ A, we say that b extends a if for each x ∈ A with a · x defined, we

have that b · x is defined and that it is equal to a · x.

For t ∈ N, we write ∂t for the t-th iteration of ∂. For a subset P of A, we write

∂P = {∂a | a ∈ P}.
A structure A equipped only with multiplication · and truncation ∂ that fulfill

(3.1) and (i) is called a composition space. So composition spaces do not need to

carry a norm.

3.2. Ramsey domains. Let F and P be families of non-empty subsets of a com-

position space (A, ·, ∂). (We do not need the norm to define Ramsey domains over

A.) Assume we have a partial function • from F × F to F with the property that

if G • F is defined, then it is given point-wise, that is, f · g is defined for all f ∈ F
and g ∈ G, and

F •G = {f · g : f ∈ F, g ∈ G}.
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Assume we also have a partial function from F × P to P, (F, P ) → F •P , such

that if F •P is defined, then f · x is defined for all f ∈ F and x ∈ P and

F •P = {f · x : f ∈ F, x ∈ P}.

The structure (F ,P, • , •) as above is called a Ramsey domain over the compo-

sition space (A, ·, ∂) if sets in P are finite and the following conditions hold:

(A) if F,G ∈ F , P ∈ P, and F • (G •P ) is defined, then so is (F •G) •P ;

(B) if P ∈ P, then ∂P ∈ P;

(C) if F ∈ F , P ∈ P, and F • ∂P is defined, then there is G ∈ F such that

G •P is defined and for each f ∈ F there is g ∈ G extending f .

A Ramsey domain as above is called vanishing if for each P ∈ P there is t ∈ N
such that ∂tP has only one element. Assume now that the composition space A
underlying the Ramsey domain is normed, that is, it carries a norm | · |. We call

the Ramsey domain linear if {|x| : x ∈ P} is a linear subset of L for each P ∈ P.

3.3. Abstract Ramsey theorem. The following condition is our Ramsey state-

ment:

(R) given a natural number b > 0, for each P ∈ P, there is an F ∈ F such that

F •P is defined, and for every b-coloring of F •P there is an f ∈ F such

that f · P is monochromatic.

For P ⊆ A and y ∈ A, put

P y = {x ∈ P | ∂x = y}.

For F ⊆ A and a ∈ A, let

Fa = {f ∈ F | f extends a}.

The following criterion is our pigeonhole principle:

(LP) given a natural number b > 0, for all P ∈ P and y ∈ ∂P , there are F ∈ F
and a ∈ A such that F •P is defined, a·y is defined, and for every b-coloring

of Fa · P y there is an f ∈ Fa such that f · P y is monochromatic.

The theorem below is the main abstract Ramsey theorem stating that, under

appropriate conditions, the pigeonhole principle implies the Ramsey statement. It

is proved in [19, Theorem 5.3].

Theorem 3.1. Let (F ,P, •, • ) be a vanishing linear Ramsey domain over a normed

composition space. Then (LP) implies (R).

3.4. Concrete pigeonhole lemmas. We formulate here two lemmas that will be

used to prove condition (LP) for the concrete Ramsey domain defined later. Both

of them are versions of the Hales–Jewett theorem. They are formulated in the

language of functions rather than in the language of parameter words/combinatorial

lines as, for example, in [13], as functional formulations are needed in the proof of

our main theorem. A comparison of the two languages used to phrase Ramsey

results is contained in [19, Sections 1, 2, and 8].

The first lemma follows from Leeb’s theorem stated as Theorem 2.4 above, but

it is simpler than this theorem, and we include its derivation from an appropriate

version of the Hales–Jewett theorem.
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Lemma 3.2. Let b > 0. Let S be an ordered tree and let v0 be its root. There

exists an ordered tree S′ such that for each b-coloring of vertices of S′ there is an

embedding i : S → S′ such that all elements of i
[
S \ {v0}

]
have the same color.

Proof. We fix b > 0 and a finite set A not containing any natural numbers. Our

choice of the set A will depend on S, but A and b will remain fixed for the duration

of the proof. In the proof, we let [n], n ∈ N, stand for {1, . . . , n}.
For m ∈ N, let Sm consist of all functions v : [p] → A, with p ≤ m. Of course,

we allow the case p = 0 when there is only one function v : [p] → A, namely the

empty function denoted by ∅.
We associate a function eh : Sm → Sn with a function h : [n′] → A ∪ [m], for

some n′ ≤ n as follows. Let v : [p] → A, p ≤ m, be in Sm. Let q ≤ n′ be largest

such that h
[
[q]
]
∩ [m] ⊆ [p]. We define now eh(v) : [q]→ A by letting, for j ∈ [q],

(
eh(v)

)
(j) =

{
h(j), if h(j) ∈ A;

v(h(j)), if h(j) ∈ [m].

Note that eh(v) ∈ Sn. Now, consider the following properties of h : [n′]→ A ∪ [m]:

(a) [m] ⊆ h
[
[n′]
]
;

(b) h
[
[q]
]
∩ [m] is an initial segment of [m] for each q < n′.

We observe that conditions (a) and (b) guarantee that eh : Sm → Sn is injective.

Indeed, (a) and (b) imply that, for the number q picked for a given p above, we

have h
[
[q]
]
∩ [m] = [p]. This immediately gives infectivity of eh.

Here is the version of the Hales–Jewett theorem we need. It is stated as Voigt’s

version of the Hales–Jewett theorem in [19, Section 2.3] and proved in [19, Sec-

tion 8.1].

For each m, there exists n such that, for each b-coloring of Sn, there exist n′ ≤ n

and a function h : [n′]→ A ∪ [m] with properties (a) and (b) such that elements of

eh
[
Sm

]
are assigned the same color.

Assume now that A is a linear order. We make Sm into an ordered tree by letting

the tree order on Sm be equal to the extension of functions. Now the immediate

successors with respect to this order on Sm of v : [p] → A, with p < m, are all

functions w : [p + 1] → A with w � [p] = v, that is, each such immediate successor

of v is uniquely determined by the value w(p) ∈ A. This observation allows us to

order the set of immediate successors of v transferring the linear order of A. The

empty function is the root of Sm.

Fix now a finite linear order B such that the sizes of B and A are related by

|B| = b (|A| − 1) + 1, that is, for each b-coloring of elements of B there is a subset

of B of the size of A whose elements get the same color. Given n ∈ N, let Tn
consist of all functions v : [q] → A ∪ B, with q ≤ n, such that v(1) ∈ B, if q > 0,

and v(j) ∈ A, for all 0 < j < q. Again, we make Tn into an ordered tree: the

tree relation is extension; the immediate successors in Tn of the empty function

are identified with the elements of B and the immediate successors of a non-empty

function with domain [q], for some 0 < q < n, are identified with the elements of

A; we order those according to the linear orders on B and A, respectively.
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It will be convenient to call a function e : S → T , where S and T are ordered

trees, a rootless embedding if it is injective and fulfills points (i) and (ii) in the

definition of morphism from Section 2.2. So the root of S need not be mapped by

e to the root of T .

Now, we are ready to prove the lemma. By picking A as large as the largest

set of the immediate successors of an element of S and by enlarging S, we can

assume that S has the form S1+m for some m. So it will suffice to show that for

each m there exists n such that, for each b-coloring of T1+n, there is an embedding

i : S1+m → T1+n with all elements of i
[
S1+m \ {∅}

]
having the same color. We can

then take S′ = T1+n.

Non-empty elements of S1+m are of the form a_v for a ∈ A and v ∈ Sm;

similarly, non-empty elements of T1+n are of the form a_v for a ∈ B and v ∈ Sn.

(Here a_v is the function with domain [q + 1], if the domain of v is [q], whose

value at 1 is a and whose value at 1 < i ∈ [q + 1] is v(i − 1).) So, embeddings

i : S1+m → T1+n are precisely functions of the form

i(∅) = ∅
i(a_v) = f(a)_ea(v), for a ∈ A, v ∈ Sm,

where f : A → B is injective increasing and, for each a ∈ A, ea : Sm → Sn is a

rootless embedding. Thus, by the choice of B in relation to A, the conclusion of

the lemma is implied by the following statement.

For each m, there exists n such that, for each b-coloring of Sn, there exists a rootless

embedding e : Sm → Sn with the elements of e
[
Sm

]
having the same color.

This statement follows directly from the statement of the Hales–Jewett theo-

rem recalled at the beginning of this proof as soon as we show that the function

eh : Sm → Sn, with h : [n′]→ A∪ [m] fulfilling (a) and (b), is a rootless embedding.

We already argued that eh is injective. It is immediate that it fulfills point (ii)

from the definition of morphism. We check point (i) of the definition of morphism

as follows. We note first that, directly from the definition of eh, for v, v′ ∈ Sm,

(3.2) if v is extended by v′, then eh(v) is extended by eh(v′).

Thus, it suffices to show that, given v1 : [p1] → A and v2 : [p2] → A in Sm that do

not extend each other, and v : [p]→ A such that v = v1 ∧ v2, we have

(3.3) eh(v) = eh(v1) ∧ eh(v2).

Note that from (3.2), we get

(3.4) eh(v) is extended by eh(v1) ∧ eh(v2).

Further, under the assumptions above, we have p1, p2 ≤ m, p < m, and

(3.5) v1(p+ 1) 6= v2(p+ 1).

Let q be largest such that h([q]) ∩ [m] ⊆ [p]. By condition (a) on h, we have

q < n′, and, by condition (b), h(q+ 1) = p+ 1. Therefore, by (3.5), v1(h(q+ 1)) 6=
v2(h(q+1)), that is, eh(q+1) 6= eh(q+1). It follows that the domain of eh(v1)∧eh(v2)

is included in [q]. On the other hand, from the definitions of eh(v) and q, the domain

of eh(v) is equal to [q]. From the last two statements and from (3.4) we get (3.3). �
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For linear orders A and L, let

A⊕ L
be the linear order obtained by putting the linear order of L on top of the linear

order of A. We consider A and L to be included in A⊕ L. Let

A⊕ 1

stand for A⊕ L, where L is the linear order consisting of one element.

Fix linear orders A, L, and I. We consider L × I as linearly ordered by the

lexicographic order. For a function

p : A⊕ (L× I)→ A⊕ L

we will be interested in the following property

(3.6) p � A = idA and ∀x ∈ L x ∈ p[{x} × I] ⊆ A ∪ {x}.

Each such p is a rigid surjection. To clarify condition (3.6), note that for each

x ∈ L, the set {x} × I is an interval in the linear order L× I. The second part of

condition (3.6) says that on that interval the only values possibly attained by p are

x and points in A, and x is actually attained.

For an element x of a linear order, let

(3.7) x−

stand for the immediate predecessor of x, if there is one, and let it be equal to x,

if x has no predecessors. For a linear order L and x ∈ L, let

(3.8) Lx

stand for the linear order on L restricted to the set {y ∈ L | y ≤L x}.
We use the above notions to isolate, in Lemma 3.3, another, somewhat unusual,

version of the Hales–Jewett theorem we need. This particular statement is essen-

tially proved in [19, Section 8.1]. We will explain it precisely in the proof below.

Lemma 3.3. Let b > 0. Let two linear orders A and L be given with A non-

empty. There is a linear order I such that for each b-coloring of all functions from

(A ⊕ (L × I))y− to A, that are identity on A and where we allow y to vary over

L× I, there is

p : A⊕ (L× I)→ A⊕ L
with property (3.6) and such that the color of

r ◦ (p � {z ∈ A⊕ (L× I) : z <A⊕(L×I) min p−1(x)}),

where r : (A⊕ L)x− → A and r � A = idA, depends only on x ∈ L.

Proof. The proof is an application of the abstract approach to Ramsey theory from

[19], for which we need to define an appropriate Ramsey domain.

Let A consist of all surjections between finite linear orders. Let s : L → K and

t : N → M be in A. We declare t · s to be defined precisely when t is a rigid

surjection and L is an initial segment of M . In this situation, we let

t · s = s ◦ (t � {y ∈ N | t(y′) ∈ L for all y′ ≤N y}).
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We define now the operation ∂ on A. First, for a finite linear order K, let K− =

K \{maxK}, if K has at least two elements, and let K− = K otherwise. For s ∈ A
with s : L→ K, we let

∂s : L→ K−

be defined by (recall (3.7))

(∂s)(y) =

{
s(y), if s(y) 6= maxK;

s(y)−, if s(y) = maxK.

We leave it to the reader to check conditions (3.1) and (i) from Section 3.1 certifying

that A, with · and ∂, is a composition space as defined in Section 3.1.

We will describe now two families that form a Ramsey domain over A as in

Section 3.2. The families will be called F and P. We fix a non-empty linear order

A, which will remain fixed for the rest of the proof.

Let P consist of all finite subsets P of A, for which there exist linear orders L

and B and a surjection v0 : A→ B such that

— for each s ∈ P , s : A⊕L′ → B for an initial segment L′ of L and s � A = v0;

— there exists s ∈ P whose domain is A⊕ L.

Note that the linear order L is determined by P by the two points above. We let

L = d(P ). Condition (B) in the definition of Ramsey domain is immediate.

Now, we define F . Let L be a linear order, and let (Iy)y∈L be a sequence of non-

empty linear orders. Let
⊕

y∈L Iy be the linear order on the disjoint union
⋃

y∈L Iy
that on each set Iy coincides with the order with which this set is equipped and

makes all elements of Iy smaller than all elements of Iy′ if y <L y′. Now consider

the set F
(
L, (Iy)y∈L

)
consisting of all

p : A⊕
⊕
y∈L

Iy → A⊕ L

such that p � A = idA and y ∈ p(Iy) ⊆ A ∪ {y}, for all y ∈ L. Note that each such

p is a surjection, in fact, a rigid surjection, so it is an element of A. Observe that

the set F = F
(
L, (Iy)y∈L

)
determines both L and (Iy)y∈L, and we write

d0(F ) = (Iy)y∈L, d(F ) =
⊕
y∈L

Iy and r(F ) = L.

We let F consist of all sets of the form F
(
L, (Iy)y∈L

)
as above.

For F ∈ F and P ∈ P, we declare F •P to be defined precisely when d(P ) =

r(F ), and we let

F •P = F · P.

It is easy to check that condition (C) in the definition of Ramsey domain holds;

indeed, given F in that condition, we can take G = F to satisfy its conclusion.

Note also that

(3.9) d(F •P ) = d(F ).
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For F1, F2 ∈ F , we declare F1 • F2 to be defined precisely when d(F2) = r(F1).

Note that this equality gives

(3.10) r(F1) =
⊕
y∈L

Iy,

where Iy, for y ∈ L, are such that d0(F2) = (Iy)y∈L. Equality (3.10) allows us to

write

d0(F1) = (I ′z)z∈
⊕

y∈L Iy .

Define now, for y ∈ L,

Jy =
⊕
z∈Iy

I ′z,

and let

F1 • F2 = F
(
L, (Jy)y∈L

)
.

We leave to the reader the check that the above operation is given pointwise, that

is, that

F
(
L, (Jy)y∈L

)
= F1 · F2.

Observe that

(3.11) d(F1 • F2) = d(F1).

An inspection of the conditions under which F1 • (F2 •P ) and (F1 • F2) •P are

defined in combination with (3.9) and (3.11) shows that both these conditions are

equivalent to the conjunction of r(F1) = d(F2) and r(F2) = d(P ), so they are

equivalent to each other, and (A) from the definition of Ramsey domains follows.

Now, [19, Lemma 8.1] holds for the Ramsey domain (F ,P) as defined above

in place of (F1,S1) from [19]. Actually, the proof of [19, Lemma 8.1] shows the

conclusion of this lemma for (F ,P). Indeed, this proof consists of defining two

functions α and φ for a pair of sets from F1 and S1. In the case of (F ,P) considered

here, the functions α and φ are defined in the way identical to the case (F1,S1).

One only needs to observe that so defined φ takes values in F
(
L, (Iy)y∈L

)
, where,

to connect with the notation of [19, Lemma 8.1], L is the linear order [l] and Iy is

the linear order [Ny] for y ∈ [l] (and A = [L0]).

Now, an application of [19, Theorem 4.1] to the conclusion of [19, Lemma 8.1]

for (F ,P), in place of (F1,S1), as in the paragraph following the proof of [19,

Lemma 8.1], yields the following statement. (This statement is analogous to [19,

Hales–Jewett, combined version, p. 1188] for (F1,S1).)

For b > 0 and two linear orders A and L with A non-empty, there exist linear orders

Iy, for y ∈ L, with the following property. For each b-coloring of all functions from

(A⊕
⊕

y∈L Iy)x− to A that are identity on A, with x ∈
⊕

y∈L Iy, there is a function

p : A⊕
⊕

y∈L Iy → A⊕ L such that

— p � A = idA and y ∈ p
[
Iy
]
⊆ A ∪ {y} and

— for each r : (A⊕ L)x− → A, with x ∈ L and with r � A = idA, the color of

r ◦ (p � {z ∈ A⊕
⊕
y∈L

Iy : z <(A⊕
⊕

y∈L Iy) min p−1(x)})

depends only on x.
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It is clear that in the above statement, we can take Iy = I, for some fixed linear

order I and for all y ∈ L, by enlarging each Iy to the size of the largest linear order

among the Iy-s. So we have
⊕

y∈L Iy = L× I, as desired. �

4. The proof of Theorem 2.3

In this section, first, we apply the abstract approach as outlined in Section 3 to

prove Proposition 4.3, which is a version of Theorem 2.3 for a certain subclass of

rigid surjections and which may be of some independent interest. Then we deduce

full Theorem 2.3 from this particular case. One of the technically important points

in applying the abstract approach is finding truncation operations. We find two

truncations, one in Section 4.1, the other one in Section 4.4.1. The first one will be

used to prove Proposition 4.3, the second one to carry over the result to arbitrary

rigid surjections in Theorem 2.3.

In Section 4.1, we introduce the particular type of rigid surjections, we call sealed,

and we state, as Proposition 4.3, a result analogous to Theorem 2.3 for such rigid

surjections. In Sections 4.2 and 4.3, we prove Proposition 4.3. Then in Section 4.4

we derive Theorem 2.3 from Proposition 4.3.

4.1. A Ramsey result for sealed rigid surjections. First we note a simple

result on arbitrary rigid surjections. Let T be an ordered tree. A non-empty set

T ′ ⊆ T is called a subtree if it is closed downward with respect to vT , that is, if

w ∈ T ′, v ∈ T , and v vT w, then v ∈ T ′.

Lemma 4.1. Let S, T be ordered trees and let f : T → S be a rigid surjection. Let

T ′ be a subtree of T . Then f [T ′] is a subtree of S and f � T ′ : T ′ → f [T ′] is a rigid

surjection.

Proof. Let i : S → T be the injection of f . Let w ∈ T ′ and let v ∈ S be such that

v vS f(w). Since i is an embedding and since i is an injection of f , we have

i(v) vT i(f(w)) vT w.

Thus, i(v) ∈ T ′. Using again the fact that i is the injection of f , we have

v = f(i(v)) ∈ f [T ′].

So f [T ′] is a subtree.

To check that f � T ′ : T ′ → f [T ′] is a rigid surjection, note that since for T ′ is

closed downward with respect to vT and since i(f(w)) vT w for w ∈ T , we have

that i[f [T ′]] ⊆ T ′. It is now obvious that i � f [T ′] : f [T ′] → T ′ is an embedding

which is the injection of f � T ′. �

A rigid surjection f : T → S is called sealed if its injection maps the ≤S-largest

leaf of S to the ≤T -largest leaf of T .

For an ordered tree S and v ∈ S, let

(4.1) Sv = {w ∈ S | w ≤S v}.

Note that this definition extends (3.8). It is clear that Sv is closed under taking

predecessors in S. We call trees of the form Sv, v ∈ S, initial subtrees of S. If
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f : T → S is a rigid surjection and v ∈ S, then let

(4.2) fv = f � T i(v),

where i is the injection of f . We note the following lemma.

Lemma 4.2. Let f : T → S be a rigid surjection, let i be its injection, and let

v ∈ S. Then the domain of fv is T i(v) and the image of T i(v) under fv is Sv, and

fv is a sealed rigid surjection.

Proof. By Lemma 4.1, only Sv ⊆ f [T i(v)] needs justifying. But note that for w ∈ Sv

we have w ≤S v, so i(w) ∈ T i(v), hence w = f(i(w)) ∈ f [T i(v)] as required. �

Or first aim, accomplished in Sections 4.2–4.3 is to prove the following proposi-

tion. Later, in Section 4.4, we show how to derive Theorem 2.3 from this proposi-

tion.

Proposition 4.3. Let b > 0. Let S, T be ordered trees. There is an ordered tree V

such that for each b-coloring of all sealed rigid surjections from some V v to S, as v

varies over V , there is v0 ∈ V and a sealed rigid surjection g : V v0 → T such that

{f ◦ gt | f : T t → S is a sealed rigid surjection, t ∈ T}

is monochromatic.

4.2. Ramsey theoretic structures for Proposition 4.3. In this section, we

describe concrete Ramsey theoretic structures of the kind defined in Sections 3.1

and 3.2 that are needed for the proof of Proposition 4.3.

In the lemma below we record a simple observation about fv.

Lemma 4.4. Let f : Tw → S, w ∈ T , and g : V → T be rigid surjections. Let i be

the injection of f . Let v ∈ S. Then

fv ◦ gi(v) = (f ◦ gw)v.

Proof. Let j be the injection of g. It is clear from Lemmas 2.1 and 4.2 that the

domains of both functions fv ◦ gi(v) and (f ◦ gw)v are equal to V j(i(v)). For every

x in this set both functions are equal to f(g(x)). �

Fix a family

T
of ordered trees such that each ordered tree has an isomorphic copy in T and such

that for T1, T2 ∈ T ,

T1 ∩ T2 = ∅.
Let

L = {T v | T ∈ T , v ∈ T}.
Introducing two families, T and L, will be helpful in defining our Ramsey domain

and checking conditions (A) and (C) from the definition of Ramsey domain in this

particular case.

We now define a normed composition space. Let A be the set of all sealed rigid

surjections g : T2 → T1 for T1, T2 ∈ L. The operation · is defined as follows. Let
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f, g ∈ A. We let g · f be defined precisely when f : T y → S and g : V → T for some

ordered trees S, T, V and a vertex y in T . We let

(4.3) g · f = f ◦ gy.

Note that the orders of f and g are different on the two sides of the equation above.

Observe further that, by Lemma 4.2, the image of gy is equal to the domain of f .

The image of g · f is equal to S and its domain is equal to the domain of gy, that

is, to V j(y), where j is the injection of g. So g · f ∈ A.

For f ∈ A whose image is an ordered tree S define ∂f as follows. If S consists

only of its root, let

∂f = f.

If S has a vertex that is not a root, let v be the second ≤S-largest vertex in S.

Define

∂f = fv.

Consider L as a partial order with the partial order relation on it being inclusion.

We make the following observation about the order of inclusion on L. By disjoint-

ness of T , we have that for T1, T2 ∈ L, T1 ⊆ T2 precisely when there is T ∈ T and

v, w ∈ T such that v ≤T w, T1 = T v, and T2 = Tw. We define | · | : A → L by

letting

|f | = dom(f)

for f ∈ A.

Lemma 4.5. The structure (A, ·, ∂, | · |) defined above is a normed composition

space.

Proof. Associativity of multiplication is clear from Lemma 2.1.

We check now the three axioms of normed composition spaces. The identity

∂(g · f) = g · ∂f is a special case of Lemma 4.4 since this lemma implies that for

sealed rigid surjections g : V → T and f : Tw → S, with w ∈ T , and for v ∈ S we

have

(g · f)v = g · fv.
Indeed, observe that g · f = f ◦ gw and g · fv = fv ◦ gi(v), where i is the injection

of f . Thus, we obtain the following sequence of equalities, by using Lemma 4.4 to

get the second equality,

(g · f)v = (f ◦ gw)v = fv ◦ gi(v) = g · fv.

The second axiom, that is, the inequality |∂f | ≤ |f |, is clear from the definitions.

To check the third axiom, assume that g ·f is defined. This means that f : Tw →
S and g : V → T . Moreover,

|g · f | = V j(w),

where j is the injection of g. Now if |f ′| ≤ |f |, then f ′ : T v → S′ for some v ∈ T
with v ≤T w. Thus, g · f ′ is defined and

|g · f ′| = V j(v),

which implies |g · f ′| ≤ |g · f | as j(v) ≤V j(w). �
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Now we define a Ramsey domain over (A, ·, ∂, | · |). Recall the set T that was

used to define L above.

Let F consist of non-empty sets F ⊆ A with the property that there are T1, T2 ∈
T such that for each f ∈ F , we have rng(f) = T1 and dom(f) ⊆ T2. Note that,

since f ∈ A and T2 ∈ T , this last condition is equivalent to saying that dom(f)

is an initial subtree of T2. It is possible for no function in F as above to have its

domain equal to T2. Despite of this, since the trees in T are pairwise disjoint, each

f ∈ F determines not only dom(f), but also T2. Therefore, it is possible to define

d(F ) = T2 and r(F ) = T1.

For F1, F2 ∈ F , let F1 • F2 be defined precisely when d(F2) = r(F1). Observe that

in this case f1 · f2 is defined for all f1 ∈ F1 and f2 ∈ F2, and let

F1 • F2 = F1 · F2.

Note that F1 • F2 ∈ F and

d(F1 • F2) = d(F1) and r(F1 • F2) = r(F2).

Let P consist of all finite non-empty subsets P of A of the following form. There

exist S ∈ L and T ∈ T such that for each g ∈ P , rng(g) = S and dom(g) ⊆ T . Let

d(P ) = T.

So we have F ⊆ P. For F ∈ F and P ∈ P, F •P is defined precisely when

d(P ) = r(F ), in which case, we let

F •P = F · P.

Note that f · x is defined for each f ∈ F and x ∈ P and d(F •P ) = d(F ). Further-

more, we have F •P ∈ P.

Lemma 4.6. The structure (F ,P, •, • ) is a linear vanishing Ramsey domain over

the composition space (A, ·, ∂, | · |).

Proof. First we check in order conditions (A)–(C) from the definition of Ramsey

domain. Assume that, for F1, F2 ∈ F and P ∈ P, F1 • (F2 •P ) is defined. Then

r(F2) = d(P ) and r(F1) = d(F2 •P ). Since d(F2 •P ) = d(F2), we have r(F1) =

d(F2). It follows that F1 •F2 is defined and r(F1 •F2) = r(F2). Thus, (F1 •F2) •P
is defined, as required by (A). If P ∈ P, then clearly ∂P ∈ P, so (B) holds.

Note that if, for F ∈ F and P ∈ P, F • ∂P is defined, then F •P is defined since

d(∂P ) = d(P ), and (C) follows. We conclude that (F ,P, •, • ) is a Ramsey domain.

If P ∈ P and d(P ) = T , then

{|f | | f ∈ P} ⊆ {Tw | w ∈ T}

and the latter set is linearly ordered in L. It follows that (F ,P, •, • ) is linear.

Finally note that if P ∈ P, r(P ) = S, and d(P ) = T , then, for the natural

number t equal to one less the number of vertices in S, the range of each element

of ∂tP is equal to the root of S. Since these elements are sealed rigid surjections, it

follows that the domain of each of them also consists only of the root of T . Thus,

there is precisely one such element. So, (F ,P, •, • ) is vanishing. �
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4.3. Condition (LP) for Proposition 4.3. It is clear that the conclusion of

Proposition 4.3 is just condition (R) for the Ramsey domain (F ,P, •, • ) defined

above. So by Theorem 3.1 in conjunction with Lemma 4.6, to prove Proposition 4.3,

it suffices to check condition (LP) for (F ,P, •, • ). This is what we will do in this

section.

Sections 4.3.1 and 4.3.2 are, in a sense, preparatory. In Section 4.3.1, we find a

condition which is equivalent to condition (LP) for our Ramsey domain but has a

form that makes it easier to prove. The basis of our arguments here is formed by the

construction of an ordered tree (T ;x1, . . . , xn)⊕ (T1, . . . , Tn) out of an ordered tree

T and ordered forests T1, . . . , Tn. In Section 4.3.2, we prove versions, appropriate

for our goal of showing (LP), of auxiliary results stated earlier.

In Section 4.3.3, we give a proof of (LP), in which the main roles are played by

the construction of an ordered forest S ⊗ I out of an ordered forest S and a linear

order I and by particular rigid surjections, namely those fulfilling condition (3.6)

of Section 3.4.

4.3.1. Restatement of (LP). To set up the formulation and the proof of condition

(LP), we will need some new notions. It will be convenient to use the notion

of forest. By a forest we understand a finite partial order such that the set of

predecessors of each element is linearly ordered. The partial order relation on a

forest T is denoted by vT . So a forest is a tree with the root removed. The

following operation reverses this removal. For a forest T , let

(4.4) 1⊕ T

be the tree obtained from T by adding to it one vertex with the vertex becoming

the root of 1 ⊕ T and with vT being the restriction to T of the tree partial order

v1⊕T . We say that vertices v1, v2 of a forest T are in the same component if there is

a vertex w such that w vT v1 and w vT v2. Clearly, the components of a forest are

disjoint from each other and each of them is a tree. A forest T is an ordered forest

if it is equipped with a linear order relation, denoted by ≤T , that is the restriction

to T of a linear order relation ≤1⊕T on 1⊕T that makes 1⊕T into an ordered tree.

So ≤T is a linear order that makes each component into an ordered tree and is such

that each component of T is an interval. A tree embedding from an ordered forest S

to an ordered forest T is a function from S to T that extends to an embedding from

1⊕ S to 1⊕ T . Note that an embedding from S to T maps distinct components of

S to distinct components of T .

Let T be an ordered tree, let x1, . . . , xn ∈ T be distinct, and let T1, . . . , Tn be

ordered forests. We define the ordered tree

V = (T ;x1, . . . , xn)⊕ (T1, . . . , Tn)

as follows. The set of all vertices of V is the disjoint union of T and T1, . . . , Tn.

The tree relation vV on V restricted to T is vT and restricted to each Ti is vTi
.

Further, for each 1 ≤ i ≤ n, xi vV v for v ∈ Ti with the minimal elements of Ti
being immediate successors of xi. This description uniquely determines the tree

relation on V . We make V into an ordered tree as follows. The linear order ≤V

on V when restricted to T and Ti, 1 ≤ i ≤ n, is equal to ≤T and ≤Ti , respectively.
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Furthermore, we stipulate that Ti is a final interval in the set {v ∈ V | xi vV v}
under ≤V . This completely describes ≤V . If A is a non-empty linear order and T

is a forest, let

A⊕ T = (A; maxA)⊕ (T ).

So this is the ordered tree obtained by putting T on top of the linear order of A,

and the tree is linearly ordered by putting the linear order of T on top of A. Note

that if the forest order vT is linear, then A ⊕ T is a linear order as well and the

definition above coincides with the definition from Section 3.4. Recall that A ⊕ 1

is A⊕ T , where T consists of one element only. Similarly, if A is a one element set,

then A⊕ T is denoted by 1⊕ T as in (4.4).

We discuss now condition (LP). In this condition we are given P ∈ P, that is,

we have ordered trees T ∈ T and S ∈ L and a non-empty set P of sealed rigid

surjections from initial subtrees of T onto S. We are also given s0 ∈ ∂P . We

are looking for an appropriate F ∈ F . Note first that if S has only one vertex,

then, since elements of P are sealed rigid surjections, P has only one element and

∂P = P , so (LP) is obvious in this case. Assume, therefore, that S has at least

two vertices. Let i0 be the injection of s0. Let v0, v1 ∈ S with v1 <S v0 be the two

≤S-largest vertices of S. Let v2 = v0 ∧S v1. Let also

w1 = i0(v1), w2 = i0(v2) ∈ T.

Since s0 is sealed, its domain is Tw1 .

We need to produce

(1) an ordered tree V ∈ T and a non-empty set F of sealed rigid surjections

from initial subtrees of V onto T , and

(2) an element a ∈ A
so that F and a fulfill (LP).

This will be done as follows. Let x1, . . . , xn ∈ T list, in increasing order, all

x ∈ T with w2 vT x vT w1. For 1 ≤ i ≤ n, let Ti be the forest

Ti = {v ∈ T | xi vT v, w1 <T v, and if i < n, then xi+1 6vT v}

taken with the inherited tree relation and order relation. Let T ′ be T with all the

vertices in T1, . . . , Tn removed. So T ′ is the union of Tw1 and all the vertices v ∈ T
with w2 <T v and w2 6vT v. Note further that T is isomorphic to

(T ′;x1, . . . , xn)⊕ (T1, . . . , Tn).

The ordered tree V that we need to define will be an ordered tree in T isomorphic

to an ordered tree of the form

V = (T ′;x1, . . . , xn)⊕ (V1, . . . , Vn)

for some ordered forests V1, . . . , Vn that will be specified later. We define F to be

the set of all rigid surjections from an initial subtree of V onto T . To define the

element a ∈ A, let

a = idTw1 .



DUAL RAMSEY THEOREM FOR TREES 19

Since Tw1 is an initial subtree of V , we indeed have a ∈ A. Note that F •P and

a · s0 are defined. It remains to specify V1, . . . , Vn and show that for each b-coloring

of Fa · P s0 there is f ∈ Fa such that f · P s0 is monochromatic.

Let

Ai = {w ∈ T | w vT xi}.
The set Ai is linearly ordered by vT . Let

Bi = s0[Ai].

Since s0 is a rigid surjection, one readily checks that Bi is linearly ordered and

downwards closed under vS . Further, since x1 = w2 = i0(v2), we have

B1 = {v ∈ S | v vS v2}.

Now P s0 consists of all s ∈ P with s : Tw → S for some w ∈ T1 and such that

s � Tw1 = s0. Indeed, if i is the injection of s, then, since i is a morphism, we have

i(v0) ∧T w1 = w2 and, since i is injective, i(v0) 6= w2. So i(v0) ∈ T1. Since s is a

sealed rigid surjection, we get s : T i(v0) → S and we can take above w = i(v0). Note

that Tw is the disjoint union of Tw1 , Tw
1 , T2, . . . , Tn. So each s ∈ P s0 is completely

determined by w ∈ T1 and the restrictions

s � Tw
1 , s � T2, . . . , s � Tn.

These restrictions are arbitrary functions with s[Ti] ⊆ Bi, for 2 ≤ i ≤ n, and with

s[Tw
1 ] ⊆ B1 ∪ {v0} and {w} = s−1(v0).

On the other hand, Fa consists of all sealed rigid surjections t : V y → T , for some

y ∈ V with w1 ≤V y, with t � Tw1 = idTw1 . To witness (LP), we will only need

those elements of Fa that are of the form tw, with w ∈ T1, for some rigid surjection

t : V → T with t � T ′ = idT ′ . Such a t is completely determined by its restrictions

t � V1, . . . , t � Vn.

Note that since t is a rigid surjection, we have

T1 ⊆ t[V1] ⊆ A1 ∪ T1, . . . , Tn ⊆ t[Vn] ⊆ An ∪ Tn.

Therefore, (LP) boils down to proving the following statement.

LP Restatement 1. Let A1, . . . , An and B1, . . . , Bn be non-empty linear orders.

Let ri : Ai → Bi be a rigid surjection for 1 ≤ i ≤ n. Let b > 0 be given. Assume

T1, . . . , Tn are forests. There exist forests V1, . . . , Vn with the following property.

Assume we have a b-coloring of all sequences (u1, . . . , un) where

— u1 : A1 ⊕ V y
1 → B1 ⊕ 1, for some y ∈ V1, ui : Ai ⊕ Vi → Bi, for 2 ≤ i ≤ n;

— ui � Ai = ri, for 1 ≤ i ≤ n;

— u1 is a sealed rigid surjection.

Then there exist ti : Ai ⊕ Vi → Ai ⊕ Ti, for 1 ≤ i ≤ n, that are rigid surjections

such that ti � Ai = idAi
and the color assigned to (s1 ◦ tw1 , s2 ◦ t2, . . . , sn ◦ tn) is fixed

regardless of the choice of (s1, . . . , sn) such that

— s1 : A1 ⊕ Tw
1 → B1 ⊕ 1, for some w ∈ T1, si : Ai ⊕ Ti → Bi, for 2 ≤ i ≤ n;

— si � Ai = ri, for 1 ≤ i ≤ n;

— s1 is a sealed rigid surjection.
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A moment’s thought reveals that it suffices to show the above statement assuming

that Bi = Ai, for all 1 ≤ i ≤ n, and that each ri = idAi
. With this in mind, we

state now the condition that implies (LP) that we will prove in what follows. To

make the statement and the arguments that follow a bit more succinct, we adopt

the following definition. A function t : A⊕ T → A⊕ S, where S and T are ordered

forest and A a linear order, is called an A-rigid surjection if it is a rigid surjection

and t � A = idA. Note that in the case when S is the empty forest, an A-rigid

surjection t : A⊕ T → A is simply a function such that t � A = idA.

LP Restatement 2. Let b > 0 be given. Let A1, . . . , An be non-empty linear

orders, and let T1, . . . , Tn be ordered forests. There exist ordered forests V1, . . . , Vn
with the following property. Assume we have a b-coloring of all tuples (u1, . . . , un),

where u1 : A1⊕ V y
1 → A1⊕ 1 is a sealed A1-rigid surjection, with y ∈ V1 depending

on u1, and each ui : Ai⊕Vi → Ai, 2 ≤ i ≤ n, is an Ai-rigid surjection. Then there

exist Ai-rigid surjections ti : Ai ⊕ Vi → Ai ⊕ Ti, for i ≤ n, such that all

(s1 ◦ tw1 , s2 ◦ t2, · · · , sn ◦ tn)

have the same color, where s1 : A1 ⊕ Tw
1 → A1 ⊕ 1 is a sealed A1-rigid surjection,

w ∈ T1, and si : Ai ⊕ Ti → Ai is an Ai-rigid surjection, for 2 ≤ i ≤ n.

4.3.2. Adaptation of auxiliary lemmas from Sections 2 and 3. The following lemma

is an immediate consequence of Lemma 3.2.

Lemma 4.7. Let b > 0. Let S be an ordered forest. There exists an ordered forest

S′ such that for each b-coloring of vertices of S′ there is a tree embedding i : S → S′

such that all elements of i(S) have the same color.

Recall from Section 3.4 that, for linear orders L and I, L × I is taken with the

lexicographic order. Note also that property (3.6) from Section 3.4 implies that p

is an A-rigid surjection. Below we will consider functions denoted by px, which, we

recall, are defined by formula (4.2).

Lemma 4.8. Let b > 0. Let two linear orders A and L be given, with A being

non-empty. There is a linear order I such that for each b-coloring of all sealed

A-rigid surjections from A⊕ (L×I)y to A⊕1, where we allow y to vary over L×I,

there is

p : A⊕ (L× I)→ A⊕ L
with property (3.6) and such that for each given x ∈ L

{r ◦ px | r : A⊕ Lx → A⊕ 1 a sealed A-rigid surjection}

is monochromatic, that is, the color of r ◦ px depends only on x ∈ L.

Proof. We note that for each two linear orders A and J , with A non-empty, and

x ∈ J , a sealed rigid surjection s : A ⊕ Jx → A ⊕ 1 is uniquely determined by its

restriction s � (A ⊕ J)x− : (A ⊕ J)x− → A, where x− is the predecessor of x in

A⊕ J . It follows that Lemma 4.8 is equivalent to Lemma 3.3. �

Lemma 4.9. Let b > 0 and let A1, . . . , An and L1, . . . , Ln be linear orders, with

A1, . . . , An non-empty. There is a linear order I with the following property. Con-

sider a b-coloring of n-tuples (s1, . . . , sn) such that
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(i) s1 : A1 ⊕ (L1 × I)y → A1 ⊕ 1, for some y ∈ L1 × I, is a sealed A1-rigid

surjection;

(ii) for 2 ≤ i ≤ n, si : Ai ⊕ (Li × I)→ Ai is an Ai-rigid surjection.

Then there exist pi : Ai⊕ (Li×I)→ Ai×Li, for 1 ≤ i ≤ n, with (3.6) such that for

each sealed A1-rigid surjection r1 : A1 ⊕ Lx
1 → A1 ⊕ 1 and all Ai-rigid surjections

ri : Ai ⊕ Li → Ai, for 1 ≤ i ≤ n, the color of

(r1 ◦ px1 , r2 ◦ p2, . . . , rn ◦ pn)

depends only on x.

Proof. Consider the product A = An × · · · × A1 with the lexicographic order. (In

the argument below the choice of this order is irrelevant.) Applying Lemma 4.8 to

b > 0, the order A, and the linear order Ln ⊕ · · · ⊕ L1, we get a linear order I and

p : A⊕ ((Ln ⊕ · · · ⊕ L1)× I)→ A⊕ Ln ⊕ · · · ⊕ L1

with property (3.6). Note that we can canonically identify (Ln⊕ · · ·⊕L1)× I with

(Ln × I)⊕ · · · ⊕ (L1 × I), which we do. With this identification, by (3.6), we have

p(Li × I) ⊆ A⊕ Li. Let, for 1 ≤ i ≤ n,

πi : A⊕ (Ln ⊕ · · · ⊕ L1)→ Ai ⊕ (Ln ⊕ · · · ⊕ L1)

be the canonical projection. Now define pi : Ai⊕ (Li× I)→ Ai⊕Li, 1 ≤ i ≤ n, by

pi � Ai = idAi

pi � (Li × I) = (πi ◦ p) � (Li × I).

It is now routine to check that each pi has property (3.6) and that they fulfill the

conclusion of the lemma. �

Finally, the following lemma is an immediate consequence of Lemma 2.2.

Lemma 4.10. Let A be a non-empty linear order and let S and T be ordered forests.

Let i : S → T be an embedding. There exits an A-rigid surjection s : A⊕T → A⊕S
such that the restriction of the injection of s to S is equal to i.

4.3.3. Proof of (LP). In this section, we adopt the convention of identifying a nat-

ural number n with the set of all its strict predecessors {0, . . . , n − 1}; in par-

ticular, 0 = ∅. A sequence t of length n is, for us, a function whose domain is

n = {0, . . . , n− 1}. So, for a natural number m ≤ n, t � m is the restriction of this

function to m, and t_a is the extension of t to a sequence of length n+ 1 such that

(t_a) � n = t and (t_a)(n) = a. For two sequences t and t′, we write t ⊆ t′ if t′

extends t, that is, if t′ � n = t, where n is the length of t.

For a forest T and v ∈ T , let htT (v) be the cardinality of the set of all predecessors

of v (including v), and let

ht(T ) = max{htT (v) | v ∈ T}.

If T is clear from the context, we suppress the subscript T from htT (v). Note that

ht(v) = 1 precisely when v is a minimal vertex of T .
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Let S be an ordered forest, and let I be a finite set linearly ordered by ≤I . As

usual, we write vS for the forest relation on S and ≤S for the linear order on S.

Set n = ht(S). Let

S ⊗ I = {(s, t) ∈ S × I≤n | ht(s) = |t|},

where I≤n is the set of all sequences of elements of I of length not exceeding n and

where |t| denotes the length of the sequence t.

We introduce a binary relation on S ⊗ I as follows. For (s1, t1), (s2, t2) ∈ S ⊗ I,

let

(s1, t1) vS⊗I (s2, t2)

if and only if, for h = ht(s1),

s1 vS s2,

t1 � (h− 1) = t2 � (h− 1), and

t1(h− 1) ≤I t2(h− 1).

(4.5)

Lemma 4.11. Let S be a forest. Then S ⊗ I taken with vS⊗I is a forest.

Proof. The proof amounts to showing that vS⊗I is a partial order and that, for

each (s, t) ∈ S ⊗ I, the set

{(s′, t′) | (s′, t′) vS⊗I (s, t)}

is linearly ordered by vS⊗I . All this is straightforward, and we leave it to the

reader. �

We equip S ⊗ I with another binary relation ≤S⊗I in order to turn S ⊗ I into

an ordered tree. We define it first on the set of all immediate successors of each

element of S⊗I. Let (s, t) ∈ S⊗I with h = htS(s). The set of immediate successors

of (s, t) with respect to vS⊗I is

(4.6)
{(
s′, t_(min I)

)
| s′ ∈ imS(s)

}
∪
{(
s, (t � (h− 1))_i

)
| i ∈ imI(t(h− 1))

}
.

Note that the second set in the union above has one element if t(h − 1) <I max I

and is empty if t(h− 1) = max I. For the elements of (4.6), we set

(4.7)
(
s, (t � (h− 1))_i

)
≤S⊗I

(
s′, t_(min I)

)
≤S⊗I

(
s′′, t_(min I)

)
,

when i ∈ imI(t(h− 1)) and s′, s′′ ∈ imS(s) are such that s′ ≤S s
′′. This definition

describes ≤S⊗I on the sets of immediate successors of elements of S⊗I. We extend

it lexicographically using vS⊗I to a linear order on the whole set S⊗I as described

in Section 2.1. Thus, the following lemma is immediate.

Lemma 4.12. Let S be an ordered forest. Then S ⊗ I with vS⊗I and ≤S⊗I is an

ordered forest.

We give a more explicit description of the order ≤S⊗I below. Define Q = Q(S, I)

by letting

(4.8) Q = {(s, u) ∈ S × I<n | ht(s) = |u|+ 1},

where n = ht(S) and I<n is the set of all sequences of elements of I whose length is

strictly smaller than n. For s ∈ S with htS(s) = h and for i < h, we write s(i) for



DUAL RAMSEY THEOREM FOR TREES 23

the unique vertex of S such that s(i) vS s and htS(s(i)) = i+ 1; thus producing a

sequence (s(0), . . . , s(h − 1)) with s = s(h − 1). With an element (s, u) ∈ Q with

h = htS(s), we associate the sequence

(4.9) χ(s, u) = (s(0), u(0), s(1), u(1), . . . , s(h− 2), u(h− 2), s(h− 1)).

For (s1, u1), (s2, u2) ∈ Q, we let

(s1, u1) ≤Q (s2, u2)

if the sequence χ(s1, u1) precedes the sequence χ(s2, u2) in the lexicographic order

arising from taking S with ≤S and I with ≤∗I , the order reverse to ≤I . So for

i, j ∈ I, we set i ≤∗I j precisely when j ≤I i.

The following lemma gives a description of ≤S⊗I that will be useful in further

considerations.

Lemma 4.13. The function

Q× I 3
(
(s, u), i

)
→
(
s, u_i

)
∈ S ⊗ I

is an isomorphism of linear orders if Q × I is taken with the lexicographic order

arising from ≤Q and ≤I and S ⊗ I is taken with ≤Q⊗I .

Proof. Let π : S ⊗ I → Q be defined by

π(s, t) =
(
s, t � (htS(s)− 1)

)
.

Note that, for (s, u) ∈ Q,

π−1(s, u) = {(s, u_i) | i ∈ I},

and, by (4.5), the function

I 3 i→ (s, u_i) ∈ S ⊗ I

is an increasing injection from (I,≤I) to (S⊗ I,vS⊗I) and, therefore, to the linear

order (S ⊗ I,≤S⊗I). It follows that to get the conclusion of the lemma, it will

suffice to show that π is order preserving, that is, that for (s1, t1), (s2, t2) ∈ S ⊗ I,

(4.10) (s1, t1) ≤S⊗I (s2, t2) =⇒ π(s1, t1) ≤Q π(s2, t2).

Checking (4.10) is accomplished by verifying the following two implications:

(4.11) (s1, t1) vS⊗I (s2, t2) =⇒ π(s1, t1) ≤Q π(s2, t2)

and (
(s1, t1), (s2, t2) ∈ imS⊗I(s, t), (s1, t1) ≤S⊗I (s2, t2), (s1, t1) vS⊗I (s′1, t

′
1)
)

=⇒ π(s′1, t
′
1) ≤Q π(s2, t2).

(4.12)

We will be using formulas (4.5), (4.7), and (4.9) without mentioning them explicitly.

We show (4.11) first. The condition (s1, t1) vS⊗I (s2, t2) implies that, for h1 =

htS(s1) and h2 = htS(s2),

s1 vS s2 and t1 � (h1 − 1) ⊆ t2 � (h2 − 1),

and, therefore,

χ
(
π(s1, t1)

)
⊆ χ

(
π(s2, t2)

)
,

which gives π(s1, t1) ≤Q π(s2, t2), as required.
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We check now (4.12). Fix (s, t) ∈ S ⊗ I, and set

h = htS(s)

for the rest of this proof. The elements of imS⊗I(s, t) are listed in (4.6).

First, we consider the case of (s1, t1), (s2, t2) such that

s1, s2 ∈ imS(s), s1 ≤S s2, t1 = t2 = t_ min I,

We can assume s1 <S s2. From (s1, t1) vS⊗I (s′1, t
′
1), we get that

s1 vS s
′
1 and t1 � h = t′1 � h,

which implies (
s(0), t(0), . . . , s(h− 1), t(h− 1), s1

)
⊆ χ

(
π(s′1, t

′
1)
)
.

We also have (
s(0), t(0), . . . , s(h− 1), t(h− 1), s2

)
⊆ χ

(
π(s2, t2)

)
.

Thus, we get π(s′1, t
′
1) ≤Q π(s2, t2) since s1 <S s2.

Now consider the case of (s1, t1), (s2, t2) such that

s1 = s, t1 = (t � (h− 1))_i, where i ∈ imI(t(h− 1)),

s2 ∈ imS(s), t2 = t_(min I).

Let (s′1, t
′
1) be such that

(
s, (t � (h− 1))_i

)
vS⊗I (s′1, t

′
1), that is,

s vS s
′
1, t � (h− 1) = t′1 � (h− 1), and i ≤I t

′
1(h− 1).

It follows that(
s(0), t(0), . . . , s(h− 2), t(h− 2), s, t′1(h− 1)

)
⊆ χ

(
π
(
s′1, t

′
1

))
,

and (
s(0), t(0), . . . , s(h− 2), t(h− 2), s, t(h− 1)

)
⊆ χ

(
π
(
s2, t

_(min I)
))
.

Thus, we get

π
(
s′1, t

′
1

)
≤Q π

(
s2, t

_(min I)
)

since t(h − 1) <I t
′
1(h − 1). Condition (4.12), and therefore also condition (4.10),

is proved. �

For (s, u) ∈ Q, let

(4.13) I(s, u) = {(s, u_i) | i ∈ I}.

Note that, for (s, u) ∈ Q, I(s, u) ⊆ S ⊗ I, the union
⋃

(s,u)∈Q I(s, u) is equal to

S ⊗ I, and, by Lemma 4.13, I(s, u) is an interval with respect to the linear order

≤S⊗I . At times, we will use the isomorphism from Lemma 4.13 to identify the

linear order Q×I with S⊗I taken with ≤S⊗I . Under this isomorphism {(s, u)}×I
is identified with I(s, u).

In the lemma below, we will be considering sealed A-rigid surjections f from

ordered trees of the form A⊕ S, where S is an ordered forest, to A⊕ 1. These are

simply functions f : A⊕ S → A⊕ 1 with the following two properties: f � A = idA

and, for s ∈ S, f(s) 6∈ A if and only if s is the ≤S-largest vertex in S. The lemma
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below is used to transfer the version of the Hales–Jewett theorem from Lemma 4.8

to a Hales–Jewett–type theorem for trees.

Lemma 4.14. Let A be a non-empty linear order. Let S be a forest and I a linear

order. Let Q = Q(S, I). Let

p : A⊕ (Q× I)→ A⊕Q

have property (3.6). There is an A-rigid surjection

πp : A⊕ (S ⊗ I)→ A⊕ S,

with the following properties.

For every v ∈ S there is x ∈ Q such that for every sealed A-rigid surjection

ρ : A ⊕ Sv → A ⊕ 1, there is a sealed A-rigid surjection r : A ⊕ Qx → A ⊕ 1 such

that

r ◦ px = ρ ◦ πv
p ,

with the identification Q× I = S ⊗ I, so A⊕ (Q× I) = A⊕ (S ⊗ I).

Similarly, for every A-rigid surjection ρ : A⊕S → A, there is an A-rigid surjec-

tion r : A⊕Q→ A such that

r ◦ p = ρ ◦ πp.

Proof. Recall the definition (4.13) of I(s, u). Throughout this proof we identify

Q × I with S ⊗ I and {(s, u)} × I with I(s, u) for (s, u) ∈ Q. Recall also that

p : A⊕ (Q× I)→ A⊕Q fulfills (3.6) if p � A = idA and, for each (s, u) ∈ Q,

(4.14) (s, u) ∈ p[I(s, u)] ⊆ A ∪ {(s, u)}.

Fix (s, t) ∈ S ⊗ I. We say that (s, t) is leading if it is the ≤S⊗I -smallest element

of I(s, t � (ht(s)− 1)) such that p(s, t) = (s, t � (ht(s)− 1)). We call (s, t) ∈ S ⊗ I
very good if each (s′, t′) ∈ S ⊗ I with s′ vS s and t′ ⊆ t is leading. We call (s, t)

good if p(s, t) = (s, t � (ht(s) − 1)) and each (s′, t′) ∈ S ⊗ I with s′ vS s, s′ 6= s,

and t′ ⊆ t, t′ 6= t, is leading.

We claim that for each s ∈ S there is exactly one t such that (s, t) is a very

good element of S ⊗ I. We show this by induction on ht(s). If ht(s) = 1, the

conclusion is clear. Indeed, we take t = 〈i〉, where i is the smallest element of I

with p(s, 〈i〉) = (s, ∅), which exists by (4.14). Obviously (s, t) is very good and t is

unique such. Let now ht(s) > 1 and let s′ be the immediate predecessor of s in S.

Let t′ be the unique element such that (s′, t′) is very good. Then (s, t′) ∈ Q. Using

(4.14), pick the smallest i ∈ I such that p(s, t′_i) = (s, t′). Then (s, t′_i) is very

good. It is clear that this t′_i is unique such.

For s ∈ S, the unique t with (s, t) very good will be denoted by ts. Observe that

for s1, s2 ∈ S with s1 vS s2, we have

(4.15) ts1 = ts2 � ht(s1).

Indeed, since (s1, ts2 � ht(s1)) is very good, (4.15) follows by uniqueness of ts1 . We

also have for (s, t) ∈ S ⊗ I

(4.16) if (s, t) good, then ts � (ht(s)− 1) = t � (ht(s)− 1).
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Indeed, if (s, t) is good, then (s′, t � (ht(s) − 1)) is very good, where s′ is the

immediate vS-predecessor of s, so ts′ = t � (ht(s) − 1), and (4.16) follows from

(4.15).

Define jp : A ⊕ S → A ⊕ (S ⊗ I) by making it identity on A, and, for s ∈ S,

letting

jp(s) = (s, ts).

It follows from (4.15) and the definitions of vS⊗I and ≤S⊗I that jp is an embedding.

We define πp : A⊕ (S ⊗ I)→ A⊕ S by making it identity on A and, for (s, t) ∈
S ⊗ I, letting

πp(s, t) =


p(s, t), if p(s, t) ∈ A;

s, if (s, t) is good;

minA, if p(s, t) 6∈ A and (s, t) is not good.

Note that in the second case p(s, t) = (s, t � (ht(s)− 1)).

We claim that jp is the embedding witnessing that πp is a rigid surjection. Indeed,

it is clear that πp ◦ jp = idA⊕S . It is also clear that (jp ◦ πp) � A = idA. It remains

to verify that for (s, t) ∈ S ⊗ I we have

(4.17) jp(πp(s, t)) vA⊕(S⊗I) (s, t).

So let (s, t) ∈ S ⊗ I. If (s, t) is not good, then πp(s, t) ∈ A, so jp(πp(s, t)) ∈ A, and

(4.17) follows. If (s, t) is good, then, by (4.16),

jp(πp(s, t)) = (s, (t � (ht(s)− 1))_i0),

where i0 ∈ I is the smallest i ∈ I such that

p(s, (t � (ht(s)− 1))_i) = (s, t � (ht(s)− 1)).

Since, by virtue of (s, t) being good, the value p(s, t) is also (s, t � (ht(s)− 1)), we

get that i0 ≤I t(ht(s)− 1), so

(s, (t � (ht(s)− 1))_i0) vA⊕(S⊗I) (s, t).

Thus, (4.17) holds, as required.

Now we check the properties of πp claimed in the conclusion of the lemma. Let

v ∈ S be given. Define xv ∈ Q by letting

xv = (v, tv � (ht(v)− 1)).

We write out the rest of the argument only for ρ : A ⊕ Sv → A ⊕ 1; the same

formula defining r works also in the case of ρ : A⊕ S → A. So, let a sealed A-rigid

surjection ρ : A⊕Sv → A⊕1 be given. We are looking for a sealed A-rigid surjection

r : A ⊕ Qxv → A ⊕ 1 such that r ◦ pxv = ρ ◦ πv
p . We let r be identity on A. For

(s, u) ∈ Qxv , we define

r(s, u) =

{
ρ(s), if there is i ∈ I with (s, u_i) very good;

minA, if there is no i ∈ I with (s, u_i) very good.

We need to see that

(4.18) r ◦ pxv = ρ ◦ πv
p .
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Checking that, for (s, t) ∈ S ⊗ I, if r(p(s, t)) and ρ(πp(s, t)) are both defined, then

they are equal, boils down to an elementary case analysis, which follows the cases

in the definition of πp. This check involves the observation that, for (s, t) ∈ S ⊗ I,

(s, t) is good if and only if (s, t � (ht(s) − 1)_i) is very good for some i ∈ I. We

leave the details to the reader.

To finish proving (4.18), it remains to show that the domains of pxv and πv
p are

equal. This amounts to showing that the smallest, with respect to ≤S⊗I , element

(s, t) ∈ S ⊗ I such that πp(s, t) = v is equal to the smallest (s, t) ∈ S ⊗ I such

that p(s, t) = (v, tv � (ht(v)− 1)). We claim that both these conditions imply that

(s, t) = (v, tv), which will finish the proof of the lemma.

It suffices to see that either one of the two equations

πp(s, t) = v, p(s, t) = (v, tv � (ht(v)− 1))

implies that s = v and (s, t) is good, since then, by (4.15) and Lemma 4.13, the

smallest such (s, t) is very good, so t = tv. Now, by definition of πp, since v 6∈ A,

the condition πp(s, t) = v is equivalent to

s = v and (s, t) is good,

as required. By (4.14), the condition p(s, t) = (v, tv � (ht(v)− 1)) implies that

(4.19) s = v and t =
(
tv � (ht(v)− 1)

)_
i, for some i ∈ I.

It follows that p(v, t) = (v, tv � (ht(v) − 1)), which, by (4.15) and the second

conjunct of (4.19), gives that (v, t) is good. Thus, by the first conjunct of (4.19),

(s, t) is good, as required. �

Now we prove LP Restatement 2 from Section 4.3.1. As argued in that section

condition (LP) will follow. Our notation is as in this statement.

For the given b and T1, Lemma 4.7 produces an ordered forest T ′1. We claim that

V1 = T ′1 ⊗ I, V2 = T2 ⊗ I, . . . , Vn = Tn ⊗ I

for some linear order I are as required.

Let c be a b-coloring of all tuples (u1, . . . , un) as in the statement of (LP) with

the above defined V1, . . . , Vn. Let

Q1 = Q(T ′1, I), Q2 = Q(T2, I), . . . , Qn = Q(Tn, I)

be defined as in (4.8). As usual, we identify T ′1 ⊗ I with Q1 × I and Ti ⊗ I with

Qi × I for 2 ≤ i ≤ n. Then c extends to a coloring of all n-tuples whose entries

are: a sealed A1-rigid surjection from A1⊕ (Q1× I)y to A1⊕ 1 for some y ∈ Q1× I
followed in order by Ai-rigid surjections from Ai ⊕ (Qi × I) to Ai for 2 ≤ i ≤ n as

in Lemma 4.9. By Lemma 4.9, there exists a linear order I and functions

pi : Ai ⊕ (Qi × I)→ Ai ⊕Qi,

for i ≤ n, with property (3.6) and such that, for x ∈ Q1 and a sealed A1-rigid

surjection r1 : A1 ⊕ (Q1)x → A1 ⊕ 1 and Ai-rigid surjections ri : Ai ⊕Qi → Ai, for

2 ≤ i ≤ n, the color

(4.20) c(r1 ◦ px1 , r2 ◦ p2, . . . , rn ◦ pn)
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depends only on x.

Let now πp1
: A1 ⊕ (T ′1 ⊗ I) → A1 ⊕ T ′1 and πpi

: Ai ⊕ (Ti ⊗ I) → Ai ⊕ Ti, for

2 ≤ i ≤ n, be rigid surjections given by Lemma 4.14 applied to p1, p2, . . . , pn. It

follows from Lemma 4.14 and the observation above that the color (4.20) depends

only on x that, for v ∈ T ′1 and a sealed A1-rigid surjection s1 : A1⊕ (T ′1)v → A1⊕ 1

and Ai-rigid surjections si : Ai ⊕ Ti → Ai, for 2 ≤ i ≤ n, the color

c(s1 ◦ πv
p1
, s2 ◦ πp2

, . . . , sn ◦ πpn
)

depends only on v. This observation gives a b-coloring of vertices v of T ′1. Let

i : T1 → T ′1 be an embedding such that i[T1] is monochromatic. By Lemma 4.10,

there exists a rigid surjection q : A1 ⊕ T ′1 → A1 ⊕ T1 whose injection restricted to

T1 is equal to i. Then

q ◦ πp1
: A1 ⊕ V1 → A1 ⊕ T1

is a rigid surjection. Then

t1 = q ◦ πp1
and ti = πpi

for 2 ≤ i ≤ n

are as desired.

4.4. Passage from sealed rigid surjections to arbitrary rigid surjections.

The aim of this section is to deduce Theorem 2.3 from Proposition 4.3. The de-

duction is based on a new truncation-like operation for rigid surjections that relies

on the notion of conjugate leaves. To see the main line of the argument, the reader

may want to run it in the easy case of linear orders.

4.4.1. Conjugate leaves and a truncation-like operation. By a leaf of a tree T we

understand a vT -maximal node of T . We write

`(T )

for the set of all leaves of T . Let S and T be ordered trees. Let i : S → T be an

embedding. We say that a leaf y in T is i-conjugate to a leaf x in S provided that

(i) if x is the ≤S-largest leaf in S, then y is the ≤T -largest leaf in T ;

(ii) if x is not the ≤S-largest leaf in S, let x′ be the ≤S-smallest leaf with

x <S x
′; then y is the ≤T -largest leaf in T with

(4.21) y <T i(x′) and i(x) ∧T i(x′) = y ∧T i(x′).

Note that in point (ii) above there always exists a leaf y with (4.21); for example,

any leaf y with i(x) vT y has this property. We see that if y is i-conjugate to x,

then

i(x) ≤T y <T i(x′).

Note further that the set

{y ∈ `(T ) | i(x) ≤T y <T i(x′)}

contains two kinds of leaves—those for which i(x)∧T i(x′) = y∧T i(x′) and, possibly,

those for which i(x)∧T i(x′) <T y∧T i(x′). The leaves of the first kind form a non-

empty ≤T -initial segment of the set, and the leaf i-conjugate to x is the ≤T -largest

leaf in this segment. Observe also that the ≤T -largest leaf in T is i-conjugate only

to the ≤S-largest leaf in S.
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We drop the subscripts in ∧S , ∧T and ∧V in the subsequent proofs.

Lemma 4.15. Let i : S → T and j : T → V be embeddings. Let x ∈ `(S), y ∈ `(T )

and z ∈ `(V ). Assume that y is i-conjugate to x and z is j-conjugate to y. Then z

is (j ◦ i)-conjugate to x.

Proof. If one of the leaves x, y, z is the largest leaf in its tree, then all of them are,

and the conclusion of the lemma follows. We assume, therefore, that x, y, z are not

the largest leaves in their trees. We write ji for (j ◦ i).
Let x′ be the ≤S-smallest leaf in S that is larger than x, and let y′ be the

≤T -smallest leaf in T that is larger than y. Let

A = {v ∈ `(V ) | ji(x) ∧ ji(x′) <V v ∧ ji(x′)},

and let

B = {v ∈ `(V ) | j(y) ∧ j(y′) <V v ∧ j(y′)}.
Note that the immediate ≤V -predecessor in `(V ) of the smallest point in A is ji-

conjugate to x, and the immediate ≤V -predecessor in `(V ) of the smallest point in

B is j-conjugate to y. It suffices to show that the smallest leaves in A and B are the

same. Clearly j(y′) ∈ B. Also note that by applying j to i(x) ∧ i(x′) <T y′ ∧ i(x′)
we get that j(y′) ∈ A. Thus, it will be enough to show that

(4.22) A ∩ {v ∈ `(V ) | v ≤V j(y′)} = B ∩ {v ∈ `(V ) | v ≤V j(y′)}.

First we make some observations about the relative position of i(x), i(x′), y, and

y′. Note that since y is i-conjugate to x,

(4.23) i(x) ∧ i(x′) is a strict vT -predecessor of y′ ∧ i(x′).

Note further that

(4.24) i(x) ∧ i(x′) = y ∧ i(x′) = y ∧ y′.

Indeed, the first equality in (4.24) follows immediately since y is i-conjugate to x;

the second equality follows from the first one and from (4.23).

To show (4.22), we need to prove two inclusions. We start with ⊆. Using (4.24),

note that

(4.25) ji(x) ∧ ji(x′) = j(y) ∧ j(y′)

Observe that j(y′) ≤V ji(x′) as y′ ≤T i(x′). So, for v ∈ `(V ) with v ≤V j(y′), we

have v ≤V j(y′) ≤V ji(x′), hence v ∧ ji(x′) vV v ∧ j(y′), and therefore

v ∧ ji(x′) ≤V v ∧ j(y′).

From this inequality and from (4.25), it follows that ⊆ holds in (4.22).

To show the opposite inclusion, it suffices to see B ⊆ A. Assume that v is a leaf

in V and v 6∈ A, that is,

(4.26) v ∧ ji(x′) ≤V ji(x) ∧ ji(x′).

From it, since, by (4.23), ji(x) ∧ ji(x′) is a strict vV -predecessor of j(y′) ∧ ji(x′),
we see that v∧ ji(x′) is a strict vV -predecessor of j(y′)∧ ji(x′). As a consequence,

we immediately get

(4.27) v ∧ ji(x′) = v ∧ j(y′).
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From (4.24), we have

(4.28) ji(x) ∧ ji(x′) = j(y) ∧ ji(x′).

From (4.24) again we get

(4.29) j(y) ∧ ji(x′) = j(y) ∧ j(y′).

Putting together (4.27), (4.26), (4.28), and (4.29), we get

v ∧ j(y′) ≤V j(y) ∧ j(y′).

So v 6∈ A implies v 6∈ B, and the lemma is proved. �

Let f : T → S be a rigid surjection. Let x be a leaf in S. A leaf y of T is called

f -conjugate to x if y is i-conjugate to x, where i is the injection of f . For a leaf x

of S, define

fx = f � T y,

where y is the leaf in T that is f -conjugate to x and T y is defined by formula (4.1)

.

Lemma 4.16. Let f : T → S be a rigid surjection and let x ∈ `(S). Then the

image of fx is equal to Sx, and fx : T y → Sx is a rigid surjection, where y ∈ `(T )

is f -conjugate to x.

Proof. By Lemma 4.1, only f [T y] = Sx needs checking. If x is the ≤S-largest leaf

in S, the conclusion is clear. Assume therefore that x is not the largest leaf. Let i

be the injection of f , and let x′ be the ≤S-smallest leaf in S with x <S x
′.

To see f [T y] ⊆ Sx, note that for w ∈ T y we have, by definition,

(4.30) w ≤T y

and, as a consequence of the definition and of y being f -conjugate to x,

(4.31) w ∧ i(x′) vT w ∧ i(x).

Now take w ∈ T and assume that f(w) 6∈ Sx. Then either f(w) vS x
′ and x∧x′

is a strict vS-predecessor of f(w), or x′ <S f(w). In the first case, we get that

i(f(w)) vT i(x′) and i(x) ∧ i(x′) is a strict vT -predecessor of i(f(w)). Therefore,

since i(f(w)) vT w, we get that w ∧ i(x) is a strict vT -predecessor of w ∧ i(x′),
contradicting (4.31). In the second case, we get

y ≤T i(x′) <T i(f(w)) vT w.

So y <T w contradicting (4.30).

The inclusion Sx ⊆ f [T y] is clear: since i(x) is in T y and f(i(x)) = x, we see

that all leaves in Sx, and therefore all vertices of Sx, are in the image of f � T y. �

Lemma 4.17. Let S, T, V be ordered trees, and let g : V → T and f : T → S be

rigid surjections. Let x ∈ `(S), and let y ∈ `(T ) be f -conjugate to x. Then

fx ◦ gy = (f ◦ g)x.
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Proof. Let z be the leaf in V that is g-conjugate to y. Then we have

fx ◦ gy = (f � T y) ◦ (g � V z) = (f ◦ g) � V z,

where the last equality holds as g[V z] ⊆ T y by Lemma 4.16. Since, by Lemmas 4.15

and 2.1, we have that z is (f ◦ g)-conjugate to x, we have

(f ◦ g)x = (f ◦ g) � V z,

and the lemma follows. �

4.4.2. Proof of Theorem 2.3 from Proposition 4.3. Fix a natural number b > 0

and ordered trees S and T as in the assumption of Theorem 2.3. Let s and t be

the largest vertices in S and T with respect to ≤S and ≤T , respectively. Let S+

be the ordered tree obtained from S by adding one vertex s+ so that s+ is an

immediate vS+ -successor of the root and it is the ≤S+ -largest element of S+. Let

T+ be an ordered tree obtained from T in an analogous way by adding one vertex

t+. Note that each rigid surjection f : T → S extends to a sealed rigid surjection

f ′ : T+ → S+ by mapping t+ to s+, and observe that

(4.32) t is f ′-conjugate to s and (f ′)s = f.

Let U be an ordered tree obtained from Proposition 4.3 for b, S+ and T+. We

claim that the following statement holds.

For each b-coloring of all rigid surjections from Uy to S, where y ∈ `(U), there

exists y0 ∈ `(U) and a rigid surjection g : Uy0 → T such that the set

{f ◦ g | f : T → S a rigid surjection}

is monochromatic.

Indeed, assume we have a b-coloring c as in the assumption of the statement.

We define now a b-coloring c′ of all sealed rigid surjections from U to S+ as follows.

For a sealed rigid surjection h : U → S+, let

c′(h) = c(hs).

By our choice of U , there exists a sealed rigid surjection g+ : U → T+ such that the

color c′(f ′ ◦ g+) is fixed for all sealed rigid surjections f ′ : T+ → S+. Let y0 ∈ `(U)

be g+-conjugate to t and let g = (g+)t. Then g : Uy0 → T is a rigid surjection.

We show that it is as required by the conclusion of the statement. If f : T → S

is a rigid surjection, let f ′ : T+ → S+ be the sealed rigid surjection obtained by

mapping t+ to s+. Then, using Lemma 4.17 and (4.32), we obtain

c(f ◦ g) = c((f ′)s ◦ (g+)t) = c((f ′ ◦ g+)s) = c′(f ′ ◦ g+).

Thus, the color c(f ◦ g) does not depend on f .

We deduce the conclusion of Theorem 2.3 from the above statement. We need to

produce an ordered tree V . Let U be as in the conclusion of the statement above.

For y ∈ `(U), let Uy
0 be the ordered forest obtained from the ordered tree Uy by

removing the root. Let V0 be the ordered forest whose underlying set is the disjoint

union
⋃

y∈`(U) U
y
0 , whose forest relation vV0 is equal to vUy

0
when restricted to Uy

0

and does not relate vertices from distinct sets Uy
0 , and whose linear order relation

≤V0
is equal to ≤Uy

0
when restricted to Uy

0 and makes all vertices in Uy
0 ≤V0

-smaller
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than all vertices in Uy′

0 if y <U y′. Finally, let V = 1 ⊕ V0, where the right hand

side is defined as in the beginning of Section 4.3.1. We consider each Uy to be a

subtree of V consisting of Uy
0 and the root of V .

We claim that the ordered tree V is as required. For each y ∈ `(U), let

πy : V → Uy

be defined by letting πy � Uy = idUy and by mapping each Uy′
to the root of Uy

for y′ 6= y. Note that πy is a rigid surjection; its injection is idUy . Now assume we

have a b-coloring c of all rigid surjections from V to S. Define a b-coloring c′ of all

rigid surjections from Uy to S for y ∈ `(U) by letting for f : Uy → S

c′(f) = c(f ◦ πy).

It follows from the statement that there exists y0 ∈ `(U) and a rigid surjection

g′ : Uy0 → T such that the color c′(f ◦ g′) does not depend on the rigid surjection

f : T → S. Define now a rigid surjection g : V → T by

g = g′ ◦ πy0
.

Note that if f : T → S is a rigid surjection, then

c(f ◦ g) = c(f ◦ g′ ◦ πy0
) = c′(f ◦ g′)

so the color c(f ◦ g) does not depend on f as required, and Theorem 2.3 is proved.
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(2015), 57–79.

[2] W. Deuber, A generalization of Ramsey’s theorem for regular trees, J. Combin. Theory, Ser.

B 18 (1975), 18–23.
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