
A NOTE ON PRO-LIE GROUPS

ALEKSANDRA KWIATKOWSKA AND SÃLAWOMIR SOLECKI

Abstract. We give a short proof of the theorem that a closed subgroup of a

countable product of second countable Lie groups is pro-Lie.

The point of this note is to give a short and self-contained, modulo well known

results, proof of a theorem of Hofmann and Morris [3] (see also [4, Theorem 3.35]

and [5]) in the case of second countable groups. Another simple proof of the result of

Hofmann and Morris was found by Glöckner [2]. All the ideas in the argument which

we present here come from the proof of Lemma 2.3 in our paper [6]. We thank Isaac

Goldbring for pointing out to us possible connection between our considerations in

[6] and pro-Lie groups.

All groups below are assumed to be second countable.

1. Common knowledge background

In Proposition 1.1 we collect some well known properties of Lie groups that will

be used. Important to us will be the notion of dimension of a Lie group, which can

be understood as the dimension of the underlying manifold.

Proposition 1.1. (i) Connected components of a Lie group are open and the

connected component of the identity is a Lie group.

(ii) If M is a Lie group and N a closed subgroup of M , then N is a Lie group;

if, additionally, N is normal, then M/N is a Lie group.

(iii) Let M, N be Lie groups and let f : M → N be a continuous homomorphism.

If f is injective, then dim(M) ≤ dim(N); if f is surjective, then dim(M) ≥
dim(N).

(iv) Let M, N be Lie groups with dim(M) = dim(N) and with N connected. If

f : M → N is a continuous injective homomorphism, then f is surjective.

Proof. Point (i) is clear. For point (ii) see [7, Theorem 3.42] for the proof that N is

Lie and [7, Theorem 3.64] for the proof that M/N is Lie. Point (iii) follows from [7,

Theorem 3.32]. As for point (iv), by [7, Theorem 3.32], f(M) is an open, so closed

and open, subgroup of N . Since N is connected, f(M) = N . ¤
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Each second countable groups admits a metric generating its topology. If one can

find a complete such metric, it is customary to call such a group a Polish group.

One can check that a second countable group is Polish precisely when it is complete

in the sense of [4]. All locally compact second countable groups are Polish. In the

proposition below, we collect some basic and well known facts about Polish groups.

Proposition 1.2. Let G be a Polish group.

(i) If there is a continuous homomorphism f : H → G such that H is a Lie

group and f(H) has countable index in G, then G is Lie.

(ii) If H is a closed normal subgroup of G, then G/H with the quotient topology

is a Polish group.

(iii) If H is a Polish group and f : G → H is a Borel measurable homomorphism,

then f is continuous. In particular, if K is another Polish group and f : G →
K and g : H → K are continuous homomorphisms with g being injective

and with f(G) ⊆ g(H), then

g−1 ◦ f : G → H

is a continuous homomorphism.

Proof. Point (i) follows from [1, Theorem 2.3.3] after noticing that f(H) is non-

meager in G as countably many of its translates cover G. Point (ii) is [1, Theorem

2.2.10]. The first part of point (iii) is a particular case of [1, Theorem 2.3.3]. The

second part follows from the first one after observing that g−1 is a Borel measurable

function. ¤

2. Theorem

Recall that a second countable group G is pro-Lie if it is Polish and each neigh-

borhood of 1 contains a normal subgroup N such that G/N is Lie.

Theorem 2.1. A closed subgroup of a countable product of Lie groups is pro-Lie.

Proof. Let Li, i ∈ N, be Lie groups, and let G <
∏

i Li be closed. Let

πn :
∏

i

Li →
∏

i≤n

Li and πn,N :
∏

i≤N

Li →
∏

i≤n

Li,

for N ≥ n, be projections. The closure in the Lie group
∏

i≤N Li of the subgroup

πN (G) is itself a Lie group, and we let

AN = the connected component of 1 of πN (G).

Let

Bn,N = ker (πn,N ¹ AN ) .
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Note that since πN,N+1(AN+1) is a connected subgroup of πN (G), we have

(1) πN,N+1(AN+1) ⊆ AN .

Claim 1. For every n there is in ≥ n such that for N ≥ in

dim (Ain
/Bn,in

) = dim (AN/Bn,N ) .

Proof. Let N ≥ n. Inclusion (1) induces an injective continuous homomorphism

AN+1/(π−1
N,N+1(Bn,N ) ∩AN+1) → AN/Bn,N .

It follows by Proposition 1.1(iii) that

(2) dim(AN+1/(π−1
N,N+1(Bn,N ) ∩AN+1)) ≤ dim(AN/Bn,N ).

Note that

π−1
N,N+1(Bn,N ) ∩AN+1 ⊆ Bn,N+1,

and therefore, by the second part of Proposition 1.1(iii),

dim(AN+1/Bn,N+1) ≤ dim(AN+1/(π−1
N,N+1(Bn,N ) ∩AN+1)).

From this inequality and from (2) we get

dim(AN+1/Bn,N+1) ≤ dim(AN/Bn,N ).

We conclude that the natural number valued function N → dim(AN/Bn,N ) is non-

increasing, and the claim follows. ¤

For n ∈ N, in ≥ n will denote the natural number from Claim 1.

Claim 2. Let n ∈ N. For N ≥ in,

πn,N+1(AN+1) = πn,N (AN ).

Proof. The homomorphisms πn,N ¹ AN and πn,N+1 ¹ AN+1 induce injective contin-

uous homomorphisms

π̂n,N : AN/Bn,N →
∏

i≤n

Li and π̂n,N+1 : AN+1/Bn,N+1 →
∏

i≤n

Li.

Furthermore, from (1), we see that

π̂n,N+1(AN+1/Bn,N+1) = πn,N+1(AN+1)

⊆ πn,N (AN ) = π̂n,N (AN/Bn,N ).
(3)

By Claim 1 we have

dim(AN+1/Bn,N+1) = dim(AN/Bn,N ),
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and AN/Bn,N is connected, as AN is. Now since π̂n,N and π̂n,N+1 are injective, by

(3), we can consider the injective homomorphism

(π̂n,N )−1 ◦ π̂n,N+1 : AN+1/Bn,N+1 → AN/Bn,N ,

which is continuous by Proposition 1.2(iii). By what was said above, Proposi-

tion 1.1(iv) implies that it is surjective. From this assertion and from (3), the

conclusion of the claim follows immediately. ¤

Claim 3. For every n, for N ≥ in, πn,N (AN ) ⊆ πn(G).

Proof. By Claim 2, πn,N (AN ) does not depend on N as long as N ≥ in. Put

Cn = πn,N (AN ),

for any N ≥ in.

Fix n0. We need to see Cn0 ⊆ πn0(G). Let y0 be an arbitrary element of Cn0 .

Note first that for each n, for N ≥ in, in+1,

Cn = πn,N (AN ) = πn,n+1(πn+1,N (AN )) = πn,n+1(Cn+1).

It follows from the above equation that there exists α ∈ ∏
i Li such that πn0(α) = y0,

and for every m ≥ n0, πm(α) ∈ Cm. Now from the definitions of Am and Cm we see

that for each m ≥ n0 we have, with arbitrary N ≥ im,

πm(α) ∈ πm,N

(
πN (G)

)
⊆ πm(G),

This allows us to pick a sequence gm ∈ G such that for each i we have in Li

(4) gm(i) → α(i) as m →∞.

Since G is closed, it follows that α ∈ G. ¤

Let for n ∈ N,

L(n) = {1}n ×
∏

i>n

Li.

We are ready to finish the proof by showing that for every n, G/
(
G ∩ L(n)

)
is Lie.

Fix n and note that G
/ (

G ∩ L(n)

)
is a Polish group by Proposition 1.2(ii). Thus,

by Proposition 1.2(i), it suffices to find in it a subgroup of countable index that is a

continuous injective image of a Lie group.
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Take N ≥ in. Consider the following commutative diagram. The functions in the

diagram are defined below it.

AN

πn,N ¹AN //

σ

((PPPPPPPPPPPPPPPPPPP πn (G)

G
/ (

G ∩ L(n)

)
ρ

OO

The range of the continuous homomorphism πn,N ¹ AN is included in the group

πn (G) by Claim 3. The function ρ is the composition of the natural continuous

injective homomorphism G/
(
G ∩ L(n)

) → (
∏

i Li)/L(n) and the natural continuous

isomorphism (
∏

i Li)/L(n) →
∏

i≤n Li. Clearly ρ is a continuous isomorphism. We

define σ by

σ = ρ−1 ◦ πn,N .

By Proposition 1.2(iii), σ is a continuous homomorphism.

Since AN is Lie, it suffices to show that σ(AN ) has countable index in the group

G
/ (

G ∩ L(n)

)
. Since ρ is an isomorphism, it follows from the diagram that it is

enough to prove that πn,N (AN ) has countable index in πn (G). To see this note that

from the definition of AN and from Proposition 1.1(i), AN is a non-empty relatively

open subset of πN (G), which allows us to pick gj ∈ G, j ∈ N, so that
⋃

j

πN (gj)AN = πN (G).

Applying πn,N to both sides of the equality and noticing that πn,N (πN (G)) ⊇ πn (G),

we see that countably many translates of πn,N (AN ) cover πn(G) as required. ¤
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