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Abstract. We introduce the notion of filtration between topologies and study

its stabilization properties. Descriptive set theoretic complexity plays a role

in this study. Filtrations lead to natural transfinite sequences approximating

a given equivalence relation. We investigate those.

1. Introduction

The aim of the present paper is to describe the following general phenomenon:

under appropriate topological conditions, increasing transfinite sequences of topolo-

gies interpolating between two given topologies σ ⊆ τ stabilize at τ and, under

appropriate additional descriptive set theoretic conditions, the stabilization occurs

at a countable stage of the interpolation. Increasing sequences of topologies play an

important role in certain descriptive set theoretic considerations; see, for example,

[10, Section 1], [2, Sections 5.1–5.2], [1, Section 2], [11, Section 2], [7, Chapter 6],

[6, Section 3], [12, Sections 2–4], [8], [4], and, implicitly, [3, Sections 3–5]. In this

context, such sequences of topologies are often used to approximate an equivalence

relation by coarser, but more manageable, ones. We relate our theorems on in-

creasing interpolations between two topologies to this theme. Section 1.3 contains

a more detailed summary of our results. The results of this paper are expected to

have applications to a Scott-like analysis of quite general Borel equivalence relations

but, since they concern a self-contained and, in a way, distinct topic, we decided to

publish them separately.

1.1. Basic notions and notation. Unless otherwise stated, all topologies are as-

sumed to be defined on a fixed set X.

We write

clτ and intτ

for the operations of closure and interior with respect to a topology τ . If τ is a

topology and x ∈ X, by a neighborhood of x we understand a subset of X that

contains x in its τ -interior. A neighborhood basis of τ is a family A of subsets

of X such that for each x ∈ X and each neighborhood B of x, there exists A ∈ A
that is a neighborhood of x and A ⊆ B. So a neighborhood basis need not consist
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of open sets. A topology is called Baire if a countable union of nowhere dense sets

has dense complement.

Given a family of topologies T , we write∨
T

for the topology whose basis consists of sets of the form U0 ∩ · · · ∩ Un, where each

Ui, i ≤ n, is τ -open for some τ ∈ T . This is the smallest topology containing each

topology in T . If τi, for i ∈ I, are topologies, we write∨
i∈I

τi

for
∨
T , where T = {τi | i ∈ I}.

It is convenient to have the following piece of notation. For an ordinal α, let

(1) α⊕ 1 =

{
α+ 1, if α is a successor ordinal;

α, if α is equal to 0 or is a limit ordinal.

More uniformly, one can write, for all ordinals α,

α⊕ 1 = sup{ξ + 2 | ξ < α}.

1.2. Filtrations. The notion of filtration defined below is the main new notion of

the paper. Let σ ⊆ τ be topologies and let ρ be an ordinal. A transfinite sequence

(τξ)ξ<ρ of topologies is called a filtration from σ to τ if

(2) σ = τ0 ⊆ τ1 ⊆ · · · ⊆ τξ ⊆ · · · ⊆ τ

and, for each α < ρ, if F is τξ-closed for some ξ < α, then

(3) intτα(F ) = intτ (F ).

We will write (τξ)ξ≤ρ for (τξ)ξ<ρ+1.

Each filtration from σ to τ as above can be extended to all ordinals by setting

τξ = τ for all ξ ≥ ρ. For this reason, it will be harmless to assume that a filtration

is defined on all ordinals, which we sometimes do to make our notation lighter. On

the other hand, a truncation of a filtration from σ to τ is also a filtration from σ

to τ , that is, if (τξ)ξ<ρ is such a filtration and ρ′ ≤ ρ, then so is (τξ)ξ<ρ′ .

A filtration (τξ)ξ<ρ from σ to τ is also a filtration from σ to
∨
ξ<ρ τξ. In fact, if

τ is not relevant to the consideration at hand, we call a transfinite sequence (τξ)ξ<ρ
of topologies a filtration from σ if it is a filtration from σ to

∨
ξ<ρ τξ. It is easy

to see that (τξ)ξ<ρ is a filtration from σ precisely when, for each α < ρ, (τξ)ξ≤α is

a filtration from σ to τα.

Note that if F ⊆ X is an arbitrary set and (τξ)ξ is a transfinite sequence of

topologies fulfilling (2), then for each α

intτα(F ) ⊆ intτ (F ).

So condition (3) says that if F is simple from the point of view of τα, that is, if F

is τξ-closed for some ξ < α, then intτα(F ) is as large as possible, in fact, equal to

intτ (F ). One might say that if F is τξ-closed for some ξ < α, then τα computes
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the interior of F correctly, that is, as intended by τ . In some results below, we will

find it useful to consider a weakening of (3) to (8).

1.3. Results. Let σ ⊆ τ be two topologies. The first question is to determine

whether a given filtration (τξ)ξ from σ to τ reaches τ , that is, whether there exists

an ordinal ξ with τξ = τ . Since all the topologies τξ are defined on the same set,

there exists an ordinal ξ0 such that τξ = τξ0 for all ξ ≥ ξ0; the question is whether

τξ0 = τ . If the answer happens to be positive, we aim to obtain information on the

smallest ordinal ξ for which τξ = τ . We will achieve these goals in Sections 3 and

4 (Corollary 3.3, Theorem 4.1, and Corollary 4.9) assuming that τ is regular and

Baire and that it has a neighborhood basis consisting of sets that are appropriately

definable with respect to σ. So, informally speaking, termination at τ of a filtration

from σ to τ has to do with the attraction exerted by τ , which is expressed by τ being

Baire, and with the distance from σ to τ , which is expressed by the complexity,

with respect to σ, of a neighborhood basis of τ .

Given an equivalence relation E on a set X, with X equipped with a topology

τ , we can define a canonical equivalence relation that approximates E from above:

make x, y ∈ X equivalent when the τ -closures of the E equivalence classes of x and

y are equal. Given a filtration, this procedure gives rise to a transfinite sequence

of upper approximations of E. In Section 5, we consider the question of these

approximations stabilizing to E. We answer it in Theorem 5.1 and Corollary 5.3.

We also present and study a canonical, slowest filtration from σ to τ ; see Sec-

tion 2.

2. The slowest filtration

We introduce an operation on pairs of topologies, which will let us define filtra-

tions. Let σ and τ be topologies. Let

(4) (σ, τ)

be the family of all unions of sets of the form

U ∩ intτ (F ),

where U is σ-open and F is σ-closed. Since

intτ (F1 ∩ F2) = intτ (F1) ∩ intτ (F2),

it follows that (σ, τ) is a topology.

We record the following obvious lemma.

Lemma 2.1. Let σ ⊆ τ be topologies.

(i) We have σ ⊆ (σ, τ) ⊆ τ .

(ii) If (τξ)ξ is a filtration from σ to τ , then τξ ⊆ (τξ, τ) ⊆ τξ+1, for each ξ.

Let σ and τ be two topologies with σ ⊆ τ . Lemma 2.1 suggests defining a filtra-

tion from σ to τ that would be the slowest such filtration; see Proposition 2.2 below.

This goal will be achieved by extending operation (4) to a transfinite sequence of
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topologies. So we define by transfinite recursion topologies (σ, τ)ξ, where ξ is an

ordinal. (We will have (σ, τ)1 = (σ, τ).) Let

(σ, τ)0 = σ.

If (σ, τ)ξ has been defined, let

(σ, τ)ξ+1 = ((σ, τ)ξ, τ).

If λ is a limit ordinal and (σ, τ)ξ have been defined for all ξ < λ, then

(σ, τ)λ =
∨
ξ<λ

(σ, τ)ξ.

Note that the definition above can be phrased as follows. Given an ordinal ξ, if

(σ, τ)γ are defined for all γ < ξ, then (σ, τ)ξ is the family of all unions of sets of

the form

U ∩ intτ (F )

where, for some γ < ξ, U is (σ, τ)γ-open and F is (σ, τ)γ-closed.

Proposition 2.2 justifies regarding ((σ, τ)ξ)ξ as the slowest filtration from σ to

τ . On the opposite end, the transfinite sequence (τξ)ξ with τ0 = σ and τξ = τ for

ξ > 0 is trivially the fastest such filtration.

Proposition 2.2. Let σ ⊆ τ be topologies.

(i) The transfinite sequence ((σ, τ)ξ)ξ is a filtration from σ to τ .

(ii) If (τξ)ξ is a filtration from σ to τ , then (σ, τ)ξ ⊆ τξ, for each ordinal ξ.

Proof. Immediately from Lemma 2.1(i), we get

σ = (σ, τ)0 ⊆ (σ, τ)1 ⊆ · · · ⊆ (σ, τ)ξ ⊆ · · · ⊆ τ.

It is also clear from the very definition that, for each α, if F is (σ, τ)ξ-closed for

some ξ < α, then

int(σ,τ)α(F ) = intτ (F ),

that is, we have point (i).

Point (ii) is obtained by transfinite induction. Clearly, we have (σ, τ)0 = σ = τ0.

Assuming inductively that (σ, τ)ξ ⊆ τξ and using Lemma 2.1(ii), we get

(σ, τ)ξ+1 = ((σ, τ)ξ, τ) ⊆ (τξ, τ) ⊆ τξ+1,

as required. If λ is a limit ordinal and if, inductively, (σ, τ)ξ ⊆ τξ for all ξ < λ,

then
⋃
ξ<λ(σ, τ)ξ ⊆ τλ and, therefore, (σ, τ)λ ⊆ τλ. The conclusion follows. �

3. Stabilization at τ

Theorem 3.1 should be seen in the context of Lemma 2.1(i).

Theorem 3.1. Let σ ⊆ τ be topologies. Assume that τ is regular, Baire, and has

a neighborhood basis consisting of sets with the Baire property with respect to σ. If

σ = (σ, τ), then σ = τ .

We start with a general lemma that will be used here and later on to check

equality of two topologies.
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Lemma 3.2. Let Z be a regular topological space, and let Y be a Baire space. Let

f : Z → Y be a continuous bijection. Assume that, for each z ∈ Z and a non-

empty open z ∈ U ⊆ Z, f(U) is comeager in a neighborhood of f(z). Then f is a

homeomorphism.

Proof. We write clZ for closure in Z.

We show that, for each z ∈ U ⊆ Z, with U open, f(clZ(U)) contains f(z)

in its interior. If not, then, by surjectivity of f , f(Z \ clZ(U)) has f(z) in its

closure. Since Z \ clZ(U) is open, we have that f(Z \ clZ(U)) is non-meager in each

neighborhood of each of its points. Since each neighborhood of f(z) contains a point

in f(Z \ clZ(U)), it follows that f(Z \ clZ(U)) is non-meager in each neighborhood

of f(z). By injectivity of f and Y being Baire, this statement contradicts f(U)

being comeager in a neighborhood of f(z).

Now we finish the proof by noticing that, by regularity of Z, for each U ⊆ Z

open we have

U =
⋃
z∈U

clZ(Uz)

for some open sets Uz with z ∈ Uz. Thus,

f(U) =
⋃
z∈U

f(clZ(Uz))

and, by what was proved above, f(clZ(Uz)) contains f(z) in its interior. Thus,

f(U) is open, and the lemma follows. �

Proof of Theorem 3.1. First, we claim that each non-empty τ -open set is non-

meager with respect to σ. Let V be non-empty and τ -open, and, towards a con-

tradiction, assume that we have closed and nowhere dense with respect to σ sets

Fn, n ∈ N, such that
⋃
n Fn ⊇ V . Then intτ (

⋃
n Fn) 6= ∅. Since τ is Baire and

each Fn is also τ -closed, it follows that intτ (Fn0) 6= ∅, for some n0. Since Fn0 is

σ-closed, we have that intτ (Fn0) is (σ, τ)-open, so since (σ, τ) = σ, it is σ-open.

Thus, intσ(Fn0
) 6= ∅ contradicting the assumption on the sequence (Fn).

Our second claim is that for each x ∈ X, each τ -neighborhood of x is σ-dense in

a σ-neighborhood of x. Indeed, let V be a τ -open set containing x. Then clσ(V ) is

σ-closed and, therefore, intτ (clσ(V )) is (σ, τ)-open and so σ-open since (σ, τ) = σ.

We clearly have

x ∈ V ⊆ intτ (clσ(V ))

and V is σ-dense in intτ (clσ(V )). It follows that intτ (clσ(V )) is a σ-neighborhood

of x, in which V is σ-dense.

Thirdly, we observe that, by assumption, each x ∈ X has a τ -neighborhood basis

consisting of sets that have the Baire property with respect to σ.

It follows immediately, from the three claims above, that for each x ∈ X, each

τ -neighborhood of x is σ-comeager in a σ-neighborhood of x. The first claim also

implies that the topology σ is Baire.

The above observation implies the conclusion of the theorem by Lemma 3.2

applied to idX : (X, τ)→ (X,σ). �
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If (τξ)ξ is a filtration from σ to τ , an intuition behind condition (3) is that it

tries to ensure that τξ+1 is substantially closer to τ than τξ, unless τξ is already

equal to τ . Corollary 3.3(ii) below resonates with this intuition. Proposition 2.2(ii)

suggests regarding the smallest ξ as in the conclusion of Corollary 3.3(ii) as an

ordinal valued “distance” from σ to τ .

Recall that C-sets with respect to a topology is the smallest σ-algebra of sets

closed under the Souslin operation and containing all open sets with respect to this

topology; see [9, Section 29D]. The main point for us is that C-sets have the Baire

property even if the given topology is strengthened; see [9, Corollary 29.14].

Corollary 3.3. Let σ ⊆ τ be topologies. Assume that τ is regular, Baire, and has

a neighborhood basis consisting of sets that are C-sets with respect to σ.

(i) Let (τξ)ξ be a filtration from σ to τ . If τξ0 = τξ0+1 for some ξ0, then

τξ0 = τ .

(ii) There exists an ordinal ξ such that (σ, τ)ξ = τ .

Proof. (i) Let ξ be such that τξ = τξ+1. This equality and Lemma 2.1(ii) give

τξ = (τξ, τ). Now the conclusion follows from Theorem 3.1 if we only notice that

C-sets with respect to σ are also C-sets with respect to τξ since σ = τ0 ⊆ τξ and,

therefore, they have the Baire property with respect to τξ.

(ii) Since the topologies (σ, τ)ξ are defined on the same set X for all ordinals ξ,

there exists an ordinal ξ such that (σ, τ)ξ = (σ, τ)ξ+1, and (ii) follows from (i). �

4. Stabilization at τ and descriptive set theoretic complexity

We prove here a more refined version of stabilization. Theorem 4.1 makes a

connection with descriptive set theoretic complexity of neighborhood bases. Note

that the assumptions of Theorem 4.1 ensure that Corollary 3.3(i) applies, but the

conclusion of Theorem 4.1 gives an upper estimate on the smallest ξ0 with τξ0 = τ ,

which we do not get from Corollary 3.3(i).

Theorem 4.1. Let σ ⊆ τ be topologies, with τ being regular and Baire. For an

ordinal α ≤ ω1, let (τξ)ξ≤α be a filtration from σ to τ , with τξ metrizable, for ξ < α,

and τα Baire.

If τ has a neighborhood basis consisting of sets in
⋃
ξ<α Π0

1+ξ with respect to σ,

then τα = τ .

Remarks. 1. We emphasize that in Theorem 4.1 we do not make any separability

assumptions.

2. One can relax the assumption of metrizability but with no apparent gain in

applicability; it suffices to assume that τξ are paracompact and that sets that are

τξ-closed are intersections of countably many sets that are τξ-open, for all ξ < α.

3. When α = ω1, then, of course,
⋃
ξ<α Π0

1+ξ is the family of all Borel sets with

respect to σ.

Fix (τξ)ξ<ρ, a transfinite sequence of topologies fulfilling (2).

Let α < ρ. Define α-tame sets to be the smallest family of subsets of X

containing τξ-closed sets for each ξ < α and closed under the following operation.
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Let U be a τξ-discrete family of τξ-open sets, for some ξ < α. Let FU be an α-tame

set, for U ∈ U . Then ⋃
U∈U

(
FU ∩ U

)
is α-tame.

The class of α-tame sets is needed in the proof of Theorem 4.1 to handle the case

α = ω1. If α < ω1, the simpler family of sets that are τξ-closed for ξ < α suffices.

This is reflected in Lemma 4.2(ii) below.

Lemma 4.2. Let (τξ)ξ<ρ be a transfinite sequence fulfilling (1), and let α < ρ.

(i) If τξ is metrizable, for each ξ < α, then each α-tame set is a countable

union of τα-closed sets.

(ii) If α < ω1 and τξ is metrizable, for each ξ < α, then each α-tame set is a

countable union of τξ-closed sets with ξ < α. That is, for each α-tame set

F , there exist sets Fn, n ∈ N, such that Fn is τξn-closed, for some ξn < α,

and F =
⋃
n Fn.

Proof. We prove point (i). It suffices to show that the family of countable unions

of τα-closed sets is closed under the operation in the definition of α-tame sets. Let

U be a τξ-discrete family of τξ-open sets, for some ξ < α, and let FUk , for U ∈ U ,

k ∈ N, be τα-closed sets. We need to see that

(5)
⋃
U∈U

((⋃
k

FUk

)
∩ U

)
is a countable union of τα-closed sets. Recall that each τξ-open set is a countable

union of τξ-closed sets. So, for each U ∈ U , we can fix τξ-closed sets HU
n , n ∈ N,

such that U =
⋃
nH

U
n . Thus, the set in (5) can be represented as

(6)
⋃
k

⋃
n

( ⋃
U∈U

(
FUk ∩HU

n

))
and τξ-discreteness of U , which implies τα-discreteness of U , ensures that the sets⋃
U∈U

(
FUk ∩HU

n

)
are τα-closed.

The proof of (ii) is similar to the proof of (i). With the notation (U , ξ, FUk ) as

above, we assume that for each U ∈ U and k ∈ N, the set FUk is τγUk -closed for some

γUk < α. Working with formula (6), we see that

(7)
⋃
U∈U

(
FUk ∩HU

n

)
=
⋃
γ<α

⋃
{FUk ∩HU

n | γUk = γ}.

Now, the first union on the right hand side of (7) is countable and, by τξ-discreteness

of U , we see that ⋃
{FUk ∩HU

n | γUk = γ}
is τmax(ξ,γ)-closed. Since max(ξ, γ) < α, point (ii) and the lemma follow. �

We say that A ⊆ X is α-solid if for each countable family F of α-tame sets with⋃
F containing a non-empty relatively τα-open subset of A, we have intτα(F ) 6= ∅

for some F ∈ F . We call a set A ⊆ X α-slight if there exists a countable family F
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with A ⊆
⋃
F and such that each F ∈ F is α-tame and intτα(F ) = ∅. We register

the following lemma that follows directly from the definitions.

Lemma 4.3. Let (τξ)ξ<ρ be a transfinite sequence fulfilling (1), and let α < ρ. A

set is α-solid if and only if no non-empty relatively τα-open subset of it is α-slight.

Lemma 4.4 below contains basic properties of α-slight sets.

Lemma 4.4. Let (τξ)ξ<ρ be a transfinite sequence fulfilling (1), and let α < ρ.

(i) The empty set is α-slight.

(ii) If τξ is metrizable, for each ξ < α, then α-slight sets are τα-meager.

(iii) Countable unions of α-slight sets are α-slight.

(iv) Assume τξ is metrizable, for each ξ < α. Let A ⊆ X. Assume that for

some ξ < α, there is a family U of τξ-open sets such that A ⊆
⋃
U and

A ∩ U is α-slight for each U ∈ U . Then A is α-slight.

(v) Assume that α < ω1 and τξ is metrizable, for each ξ < α. Let A ⊆ X.

Then A is α-slight if and only if there is a countable family F such that

A ⊆
⋃
F and each F ∈ F is τξ-closed, for some ξ < α depending on F ,

and intτα(F ) = ∅.

Proof. Points (i) and (iii) are obvious, with point (i) for α = 0 being true due to

the set theoretic convention that the union of an empty family of sets is the empty

set. Point (ii) is immediate from Lemma 4.2(i).

We show (iv). By Stone’s Theorem [5, Theorem 4.4.1] each family of τξ-open

sets has a refinement that is a σ-discrete, with respect to τξ, family of τξ-open sets.

Therefore, there are τξ-discrete families Un, n ∈ N, of τξ-open sets such that, given

n, the set A ∩U is α-slight for each U ∈ Un and the family
⋃
n Un covers A. Thus,

by (iii), it suffices to show the following statement: if U is a τξ-discrete family of

τξ-open sets covering A such that A ∩ U is α-slight, for each U ∈ U , then A is

α-slight. Now, for U ∈ U , we can find a sequence FUk , k ∈ N, of α-tame sets such

that A ∩ U ⊆
⋃
k F

U
k and intτα(FUk ) = ∅ for each k. By τξ-discreteness of U , for

each k ∈ N, the set

Ek =
⋃
{FUk ∩ U | U ∈ U}

is α-tame. Again, using τξ-discreteness of U , we see that, for each k, Ek has empty

interior with respect to τα. Since A ⊆
⋃
k Ek, we see that A is α-slight.

To see (v), note first that the direction ⇐ is obvious since for each ξ < α, each

τξ-closed set is α-tame. The direction ⇒ follows from Lemma 4.2(ii). �

We record a reformulation of Lemma 4.4(iv) that we will need later in the paper.

Lemma 4.5. Let (τξ)ξ<ρ be a transfinite sequence fulfilling (1), and let α < ρ.

Assume that α < ω1 and τξ is metrizable, for each ξ < α. Then A ⊆ X is α-solid

if and only if for each countable family F of sets such that each F ∈ F is τξ-closed,

for some ξ < α depending on F , and
⋃
F contains a non-empty relatively τα-open

subset of A, we have intτα(F ) 6= ∅ for some F ∈ F .

Proof. The lemma follows from Lemmas 4.4(iv) and 4.3. �
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We say that (τξ)ξ<ρ is a weak filtration from σ to τ provided (1) holds and,

for each α < ρ, if F is τξ-closed for some ξ < α, then

(8) intτα(F ) is τ -dense in intτ (F ).

It is clear that each filtration is a weak filtration.

Lemma 4.6. Let (τξ)ξ<ρ be a weak filtration from σ to τ .

(i) If α < ρ and F is α-tame, then intτα(F ) is τ -dense in intτ (F ).

(ii) If α ≤ β < ρ, then β-solid sets are α-solid.

Proof. (i) We consider the family

F = {F | F ⊆ X, intτα(F ) is τ -dense in intτ (F )}.

We need to show that α-tame sets are included in F . Since (τξ)ξ<ρ is a weak

filtration, F contains all τξ-closed sets for all ξ < α. It remains to see that F is

closed under the operation in the definition of α-tame sets. Let U be a τξ-discrete

family of τξ-open sets, for some ξ < α. Let FU be sets in F , for U ∈ U . We need

to see that ⋃
U∈U

(
FU ∩ U

)
∈ F .

Since the family U is τξ-discrete, so τ -discrete, and sets in U are τξ-open, so

τ -open, we have

intτ

( ⋃
U∈U

(
FU ∩ U

))
=
⋃
U∈U

intτ
(
FU ∩ U

)
=
⋃
U∈U

(
intτ

(
FU
)
∩ U

)
.

Since each U ∈ U is also τα-open, we have

intτα
(
FU ∩ U

)
= intτα

(
FU
)
∩ U.

It follows that it is enough to show that intτα
(
FU
)
∩U is τ -dense in intτ

(
FU
)
∩U ,

for each for U ∈ U . But this is clear since, by assumption, intτα
(
FU
)

is τ -dense in

intτ
(
FU
)

and U is τ -open being τξ-open.

(ii) We make two observations. First, clearly, α-tame sets are β-tame. Second,

for F ⊆ X, intτβ (F ) 6= ∅ trivially implies that intτ (F ) 6= ∅. If now F is α-tame,

then intτ (F ) 6= ∅ implies intτα(F ) 6= ∅, by (i). So for α-tame sets, intτβ (F ) 6= ∅
implies intτα(F ) 6= ∅. These two observations give (ii). �

The statement of the following technical result is more precise than what is

needed in this section, but this more refined version will be used in Section 5. Its

proof extends the arguments in [12, Lemma 4.1]. There are also analogies with [10,

Lemmas 8 and 9].

Lemma 4.7. Let α ≤ ω1. Assume that (τξ)ξ≤α is a weak filtration from σ, with τξ
metrizable for ξ < α. If A ⊆ X is Π0

1+ξ with respect to σ, for some ξ ≤ α, ξ < ω1,

and B ⊆ A is α-solid, then clτξ(B) \A is τα-meager.

For the remainder of the proof of Lemma 4.7, we fix α and (τξ)ξ≤α as in the

statement. For ξ ≤ α, put

(9) clξ = clτξ and intξ = intτξ .
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Since α is fixed, we write slight for α-slight.

Lemma 4.8. If A ⊆ X is Π0
1+ξ with respect to σ, for ξ ≤ α, ξ < ω1, then there

exists a τξ-closed set F such that

(i) if ξ < α, then (A \ F ) ∪ (F \A) is slight;

(ii) if ξ = α, then F \ A is τα-meager and A \ F is a union of τα-open sets U

such that U ∩A is slight.

Proof. First we make the following technical observation.

Let γ < ξ ≤ α, and let A,F1, F2 ⊆ X be such that F1 is τγ-closed, F2 is τξ-closed,

A ∩ F1 is slight, and A ∩ V is not slight for each τξ-open set V with V ∩ F2 6= ∅.
Then

intα(F1 ∩ F2) = ∅.

To prove this observation, set U = intα(F1 ∩ F2) and assume that U is not

empty. Note that U is τα-open and U ⊆ F1. Since γ < ξ ≤ α and F1 is τγ-closed,

by assumption (8), there exists a τξ-open set V with

(10) V ⊆ F1 and V ∩ U 6= ∅.

Since A∩F1 is assumed to be slight, by the first part of (10), A∩V is slight, which

implies by our assumption on F2 that V ∩F2 = ∅. Now, by the second part of (10),

we get U 6⊆ F2, which leads to a contradiction with the definition of U .

For A ⊆ X and ξ ≤ α, let

cξ(A) = X \
⋃
{U | A ∩ U is slight and U is τξ-open}.

We show that F = cξ(A) fulfills the conclusion of the lemma. Obviously cξ(A)

is τξ-closed. It is clear that A \ cα(A) fulfills the second part of point (ii). By

Lemma 4.4(iv), if ξ < α, then A \ cξ(A) is slight.

It remains to see that if A is Π0
1+ξ with respect to τ0, then cξ(A) \ A is slight,

if ξ < α, and cξ(A) \A is τα-meager, if ξ = α. This is done by induction on ξ. For

ξ = 0, A is Π0
1 with respect to τ0, so c0(A) ⊆ A by Lemma 4.4(i). Now c0(A) \ A

being empty is τα-meager if α = 0 and is slight if α > 0 by Lemma 4.4(i). Assume

we have the conclusion for all γ < ξ. Let A be in Π0
1+ξ with ξ > 0. There exists a

sequence Bn, n ∈ N, with Bn ∈ Π0
1+γn , for some γn < ξ, with X \A =

⋃
nBn. We

have

cξ(A) \A = cξ(A) ∩
⋃
n

Bn ⊆
⋃
n

(
cξ(A) ∩ cγn(Bn)

)
∪
(
Bn \ cγn(Bn)

)
.

By what we proved above, the set Bn\cγn(Bn) is slight for each n, so also τα-meager,

by Lemma 4.4(ii); thus, to prove the conclusion of the lemma, by Lemma 4.4(iii),

it suffices to show that, for each n, cξ(A) ∩ cγn(Bn) is slight, if ξ < α, and is

τα-meager, if ξ = α. Both these goals will be achieved if we prove that

intα(cξ(A) ∩ cγn(Bn)) = ∅.

This equality will follow from the observation at the beginning of the proof if we

show that A ∩ cγn(Bn) is slight and A ∩ V is not slight for any τξ-open set V with



TOPOLOGIES, DESCRIPTIVE COMPLEXITY, AND EQUIVALENCE RELATIONS 11

V ∩ cξ(A) 6= ∅. The second condition holds by the definition of cξ(A). To see that

A ∩ cγn(Bn) is slight, note that

A ∩ cγn(Bn) ⊆ cγn(Bn) \Bn,

and by our inductive assumption cγn(Bn) \Bn is slight. �

Proof of Lemma 4.7. Let A be Π0
1+ξ, ξ ≤ α, and let B ⊆ A be α-solid. By Lem-

mas 4.8 and 4.4(ii), independently of whether ξ < α or ξ = α, there exists a

τξ-closed set F such that F \A is τα-meager and A \ F is covered by τα-open sets

U ⊆ X \ F with A ∩ U slight. Note that this last statement together with the

assumption that B is α-solid immediately imply that B \ F is empty. Thus, we

have B ⊆ F . Since F is τξ-closed, it follows that clξ(B) ⊆ F , which gives

clξ(B) \A ⊆ F \A.

Since F \A is τα-meager, we have that clξ(B) \A is τα-meager, as required. �

Proof of Theorem 4.1. We continue with our convention (9). First, we note that

each non-empty τ -open set B is α-solid. Indeed, let each Fn, n ∈ N, be α-tame. As-

sume that
⋃
n Fn contains a non-empty relatively τα-open subset of B. So

⋃
n Fn

contains a non-empty τ -open set. Since, by Lemma 4.2(i), each Fn is a count-

able union of τ -closed sets and τ is Baire, we have intτ (Fn) 6= ∅ for some n. By

Lemma 4.6(i), we have intα(Fn) 6= ∅. Thus, B is α-solid.

Now we show that if A ⊆ X is a τ -neighborhood of x, then A is τα-comeager in

a τα-neighborhood of x. We can assume that A is Π0
1+ξ for some ξ < α. Note that

B = intτ (A) is τ -open and x ∈ B. Since, by what was proved above, B is α-solid,

by Lemma 4.7, we have that clξ(B) \ A is τα-meager. Put F = clξ(B) and note

that F is τξ-closed. By assumption (3), we get

intα(F ) = intτ (F ) ⊇ B 3 x.

Clearly we also have

intα(F ) \A ⊆ F \A,

and this last set is τα-meager. Thus, intα(F ) is the desired τα-neighborhood of x.

The above observation implies the conclusion of the theorem by Lemma 3.2

applied to idX : (X, τ)→ (X, τα). �

Recall the notation α⊕ 1 from (1).

Corollary 4.9. Let σ ⊆ τ be topologies, with τ being regular and Baire. For

an ordinal α ≤ ω1, let (τξ)ξ<α⊕1 be a filtration from σ to τ , with τξ completely

metrizable for each ξ < α⊕ 1.

If τ has a neighborhood basis consisting of sets that are in
⋃
ξ<α Π0

1+ξ with respect

to σ, then τ =
∨
ξ<α⊕1 τξ.

Proof. If α is a successor ordinal, then α⊕1 = α+1, and the conclusion is immediate

from Theorem 4.1.
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Assume now that α is limit. (The corollary is tautologically true for α = 0.) We

then have α⊕ 1 = α. Let

τα =
∨
ξ<α

τξ.

Note that (τξ)ξ≤α is a filtration from σ to τ . If we show that τα is Baire, Theorem 4.1

will imply that τ = τα as required. Therefore, it suffices to check the following claim.

Claim. Let T be a set of completely metrizable topologies linearly ordered by in-

clusion. Then
∨
T is a Baire topology.

Proof of Claim. Let Fi, i ∈ N, be a sequence of sets that are nowhere dense with

respect to
∨
T , and let U be a non-empty set that is open with respect to

∨
T .

Since T is linearly ordered by inclusion, we can assume that U ∈ t for some t ∈ T .

We inductively construct topologies ti ∈ T , i ∈ N, with a complete metric di ≤ 1

inducing ti. We also construct non-empty sets Ui ∈ ti. All this is arranged so that

Ui ∩ Fi = ∅, di−diam(Uj) ≤ 1
j+1 , t ⊆ ti ⊆ tj , and clti(Uj) ⊆ Ui ⊆ U for all natural

numbers i < j. The construction of these objects is easy using the fact that T is

linearly ordered by inclusion.

Consider now the topology t∞ =
∨
i∈N ti, which is completely metrizable as

witnessed by the metric d∞ =
∑
i 2−idi. Note that the sets clt∞(Ui) are non-

empty, t∞-closed, decreasing, and their d∞-diameters tend to 0. It follows that

their intersection consists of precisely one point x∞. For each i we have

x∞ ∈ clt∞(Ui+1) ⊆ clti(Ui+1) ⊆ Ui.

Thus, x∞ ∈ U \
⋃
i∈N Fi.

We just showed that the complement of
⋃
i∈N Fi is dense with respect to

∨
T ,

and the claim follows. �

5. Upper approximations of equivalence relations

Fix (τξ)ξ<ρ, a transfinite sequence of topologies as in (2). Let E be an equivalence

relation on X. There exists a natural way of producing a transfinite sequence of

upper approximations of E using (τξ)ξ<ρ. For each ξ < ρ define the equivalence

relation Eξ on X by letting

xEξy if and only if clτξ([x]E) = clτξ([y]E).

Note that

(11) E0 ⊇ E1 ⊇ · · · ⊇ Eξ ⊇ · · · ⊇ E.

The main question is when the transfinite sequence of equivalence relations in (11)

stabilizes at E. Theorem 5.1 gives an answer.

Before we state it we need a definition. Let (τξ)ξ<ρ be a transfinite sequence of

topologies with (2). Recall the definition of α-solid for α < ρ from Section 4. We

call a set solid if it is α-solid for each α < ρ. (For more on this notion, see Remark

2 following the statement of Theorem 5.1.) Recall the notation α⊕ 1 from (1).
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Theorem 5.1. Let (τξ)ξ<α⊕1, α ≤ ω1, be a filtration from σ. Assume τξ is com-

pletely metrizable for each ξ < α. Let E be an equivalence relation on X whose

equivalence classes are solid.

If all equivalence classes of E are in
⋃
ξ<α Π0

1+ξ with respect to σ, then E =⋂
ξ<αEξ.

Remarks. We keep the notation and assumptions as Theorem 5.1.

1. If α is a successor ordinal, say α = β+ 1, then the conclusion of Theorem 5.1

reads: if all equivalence classes of E are in Π0
1+β with respect to σ, then E = Eβ .

2. We point out here that being solid, under the assumptions of Theorem 5.1,

can be phrased so that it involves only sets that are τξ-closed for appropriate ξ

rather than the more complicated α-tame sets.

If α is a successor ordinal, then A being solid means α-solid. So, under the

assumption that τξ is metrizable for each ξ < α, by Lemma 4.5, A being solid is

equivalent to the following condition: for each countable family F with every F ∈ F
being τξ-closed, where ξ < α depends on F , and with

⋃
F containing a non-empty

relatively τα-open subset of A, we have intτα(F ) 6= ∅ for some F ∈ F .

In the same spirit, if α is limit, then A being solid means α′-solid for each α′ < α.

So, again, under the assumption that τξ is metrizable for each ξ < α, by Lemma 4.5,

A being solid is equivalent to the following condition: for each α′ < α, for each

countable family F with every F ∈ F being τξ-closed, where ξ < α′ depends on

F , and with
⋃
F containing a non-empty relatively τα′ -open subset of A, we have

intτα′ (F ) 6= ∅ for some F ∈ F .

We will need a refinement of a special case of Lemma 4.7. Our gain consists of

getting clτα(A)\A to be relatively τα-meager in clτα(A) rather than just τα-meager.

In exchange, we have to make a stronger assumption that A is (α+ 1)-solid rather

than α-solid (see Lemma 4.6(ii)). Recall the definition of weak filtration from

Section 4. The proof of the lemma below is the place where we need to use weak

filtrations instead of filtrations.

Lemma 5.2. Let α < ω1. Let (τξ)ξ≤α+1 be a filtration from σ, with τξ metrizable

for each ξ ≤ α. If A is (α+ 1)-solid and Π0
1+α with respect to σ, then clτα(A) \A

is relatively τα-meager in clτα(A).

Proof. The conclusion will follow from Lemma 4.7. Put X ′ = clτα(A), and let τ ′ξ
be τξ restricted to X ′. Note that (τ ′ξ)ξ≤α is a transfinite sequence of topologies on

X ′ fulfilling (2) with τ ′ξ metrizable for ξ ≤ α.

First, we check that A being (α+1)-solid with respect to (τξ)ξ≤α+1 implies that it

is α-solid with respect to (τ ′ξ)ξ≤α. By Lemma 4.5, it suffices to check that for every

sequence (F ′n) such that F ′n is τ ′ξn -closed, for some ξn < α, and
⋃
n F
′
n contains

a non-empty relatively τ ′α-open subset of A, there is n such that intτ ′
α

(F ′n) 6= ∅.
Let Fn be τξn -closed with F ′n = Fn ∩ X ′. Our assumption on (F ′n) implies that⋃
n (Fn ∩X ′) contains a non-empty relatively τα-open subset of A since A is a

subset of X ′. Now consider the countable family {Fn ∩ X ′ | n ∈ N}. Since X ′ is

τα-closed, the sets Fn ∩X ′ are τα-closed. Since A is (α + 1)-solid with respect to
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(τξ)ξ≤α+1, there is n such that

(12) intτα+1
(Fn ∩X ′) 6= ∅.

Since (τξ)ξ≤α+1 is a filtration, equation (12) gives intτα(Fn) ∩X ′ 6= ∅, that is,

intτ ′
α

(Fn ∩X ′) 6= ∅,

as required.

Thus, to reach the desired conclusion by using Lemma 4.7 (applied to A = B

and X ′ with (τ ′ξ)ξ≤α), it suffices to check condition (8) for (τ ′ξ)ξ≤α, which we now

do. Let ξ < β < α, and let F be τξ-closed. We need to check that intτ ′
β
(F ∩X ′) is

τ ′α-dense in intτ ′
α

(F ∩X ′). Let

N = intτα+1
(X ′).

Since A is solid, N is τα-dense in X ′. It will therefore suffice to check that

(13) intτ ′
α

(F ∩X ′) ∩N ⊆ intτ ′
β
(F ∩X ′).

Observe that

(14) intτ ′
α

(F ∩X ′) ∩N ⊆ intτ ′
α+1

(F ∩X ′) ∩N,

and, further, since N is τα+1-open and included in X ′, we have

(15) intτ ′
α+1

(F ∩X ′) ∩N ⊆ intτα+1(F ∩N) = intτα+1(F ) ∩N.

Note that we use τα+1-openness of N in our verification of the inclusion and the

equality in (15). On the other hand, we have

(16) intτβ (F ) ∩X ′ ⊆ intτ ′
β
(F ∩X ′).

By combining (14), (15), and (16), we see that to prove (13), it is enough to show

intτα+1
(F ) ∩N ⊆ intτβ (F ) ∩X ′.

Since N ⊆ X ′, this inclusion immediately follows from intτα+1
(F ) ⊆ intτβ (F ). �

Proof of Theorem 5.1. Let x, y ∈ X be such that [x]E and [y]E are Π0
1+ξ for some

ξ < α. If xEξy, then clξ([x]E) = clξ([y]E). Note that ξ + 1 < α ⊕ 1. Using this

assumption, metrizability of τγ for γ < ξ, and [x]E and [y]E being (ξ + 1)-solid, by

Lemma 5.2, we see that [x]E and [y]E are both τξ-comeager in clξ([x]E) = clξ([y]E).

This last set is τξ-closed and τξ is completely metrizable, so [x]E and [y]E intersect;

thus, xEy.

It follows from the argument above that if each E equivalence class is in the

family
⋃
ξ<α Π0

1+ξ with respect to σ, then
⋂
ξ<αEξ ⊆ E, so E =

⋂
ξ<αEξ, as

required. �

The following corollary is a consequence of Theorem 5.1, in which the assumption

on equivalence classes is phrased in terms of τ . We emphasize that no separability

assumptions are needed.
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Corollary 5.3. Let σ ⊆ τ be topologies, with τ being Baire. Let α ≤ ω1, and let

(τξ)ξ<α be a filtration from σ to τ , with τξ completely metrizable for each ξ < α.

Assume E is an equivalence relation whose equivalence classes are τ -open.

If all E equivalence classes are in
⋃
ξ<α Π0

1+ξ with respect to σ, then E =⋂
ξ<αEξ.

Remarks. 1. Each E equivalence class being τ -open, as in the corollary above, is

equivalent to saying that E is a (τ × τ)-open subset of X ×X.

2. As in Theorem 5.1, in Corollary 5.3, if α < ω1 is a successor, say α = β + 1,

then the conclusion reads: if all equivalence classes of E are in Π0
1+β with respect

to σ, then E = Eβ .

Proof of Corollary 5.3. Extend the given filtration to a filtration (τξ)ξ<α+1 by set-

ting τα = τ . It follows from Theorem 5.1, that it suffices to check that E equivalence

classes are solid. Since (τξ)ξ<α+1 is a filtration from σ to τ , by Lemma 4.6(ii), it

suffices to check that E equivalence classes are α-solid. This is immediate, by

Lemma 4.4(ii), from τ being Baire and each E-class being τ -open. �
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