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Preliminaries

Let V0 = {q0, q1, q2} ∈ R2 and Fi(x) = 1
2(x+ qi) for i = 0, 1, 2.

Then

SG =

∞⋃
m=1

⋃
|w|=m

Fw(V0)

We work on the finite graph approximation Vm =
⋃
|w|=m Fw(V0)

Figure: V4
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Preliminaries

Let u : SG 7→ R. Then the Laplacian ∆µ is defined as

∆µu(x) =
3

2
lim
m→∞

5m∆mu(x)

G : SG× SG 7→ R is called Green’s Function where

−∆u = f, u|V0 = 0 ⇐⇒ u(x) =

ˆ
SG

G(x, y)f(y) dµ

∂nu(qi) is the normal derivative of u at qi where

∂nu(qi) = lim
m→∞

(5

3

)m
(2u(qi)− u(Fmi+1qi)− u(Fmi−1qi))

∂Tu(qi) is the tangential derivative of u at qi where

∂Tu(qi) = lim
m→∞

5m(u(Fmi+1qi)− u(Fmi−1qi))
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Polynomials on SG: The space Hj

Let f : SG 7→ R. Then f is a j-degree polynomial iff
∆j+1f = 0 and ∆jf 6= 0, i.e f is j-harmonic but not
(j − 1)-harmonic.

The space of polynomials with degree ≤ j is denoted Hj
Let f ∈ Hj . Then f is determined uniquely by the values
(f(q0), f(q1), f(q2),∆f(q0),∆f(q1), . . . ,∆

jf(q2))

dim(Hj) = 3j + 3

A natural basis for Hj is the family of functions {fnk} where

∆mfnk(qi) = δmnδki

For example, the three harmonic functions hi where hi(qj) = δij
form a basis for H0



Polynomials on SG: The space Hj

Let f : SG 7→ R. Then f is a j-degree polynomial iff
∆j+1f = 0 and ∆jf 6= 0, i.e f is j-harmonic but not
(j − 1)-harmonic.

The space of polynomials with degree ≤ j is denoted Hj

Let f ∈ Hj . Then f is determined uniquely by the values
(f(q0), f(q1), f(q2),∆f(q0),∆f(q1), . . . ,∆

jf(q2))

dim(Hj) = 3j + 3

A natural basis for Hj is the family of functions {fnk} where

∆mfnk(qi) = δmnδki

For example, the three harmonic functions hi where hi(qj) = δij
form a basis for H0



Polynomials on SG: The space Hj

Let f : SG 7→ R. Then f is a j-degree polynomial iff
∆j+1f = 0 and ∆jf 6= 0, i.e f is j-harmonic but not
(j − 1)-harmonic.

The space of polynomials with degree ≤ j is denoted Hj
Let f ∈ Hj . Then f is determined uniquely by the values
(f(q0), f(q1), f(q2),∆f(q0),∆f(q1), . . . ,∆

jf(q2))

dim(Hj) = 3j + 3

A natural basis for Hj is the family of functions {fnk} where

∆mfnk(qi) = δmnδki

For example, the three harmonic functions hi where hi(qj) = δij
form a basis for H0



Polynomials on SG: The space Hj

Let f : SG 7→ R. Then f is a j-degree polynomial iff
∆j+1f = 0 and ∆jf 6= 0, i.e f is j-harmonic but not
(j − 1)-harmonic.

The space of polynomials with degree ≤ j is denoted Hj
Let f ∈ Hj . Then f is determined uniquely by the values
(f(q0), f(q1), f(q2),∆f(q0),∆f(q1), . . . ,∆

jf(q2))

dim(Hj) = 3j + 3

A natural basis for Hj is the family of functions {fnk} where

∆mfnk(qi) = δmnδki

For example, the three harmonic functions hi where hi(qj) = δij
form a basis for H0



Polynomials on SG: The space Hj

Let f : SG 7→ R. Then f is a j-degree polynomial iff
∆j+1f = 0 and ∆jf 6= 0, i.e f is j-harmonic but not
(j − 1)-harmonic.

The space of polynomials with degree ≤ j is denoted Hj
Let f ∈ Hj . Then f is determined uniquely by the values
(f(q0), f(q1), f(q2),∆f(q0),∆f(q1), . . . ,∆

jf(q2))

dim(Hj) = 3j + 3

A natural basis for Hj is the family of functions {fnk} where

∆mfnk(qi) = δmnδki

For example, the three harmonic functions hi where hi(qj) = δij
form a basis for H0



Polynomials on SG: The space Hj

Let f : SG 7→ R. Then f is a j-degree polynomial iff
∆j+1f = 0 and ∆jf 6= 0, i.e f is j-harmonic but not
(j − 1)-harmonic.

The space of polynomials with degree ≤ j is denoted Hj
Let f ∈ Hj . Then f is determined uniquely by the values
(f(q0), f(q1), f(q2),∆f(q0),∆f(q1), . . . ,∆

jf(q2))

dim(Hj) = 3j + 3

A natural basis for Hj is the family of functions {fnk} where

∆mfnk(qi) = δmnδki

For example, the three harmonic functions hi where hi(qj) = δij
form a basis for H0



Polynomials on SG: The monomial basis

We want to mimic the case on I = [0, 1] where we can expand a
function as a Taylor series in terms of basis functions where we
use derivative information at one point.

For example, for harmonic functions, we have the following basis
{P0k} where the tuple of values (u(q0), ∂nu(q0), ∂Tu(q0)) = ek:

P01 = h0 + h1 + h2 P02 = −1

2
(h1 + h2) P03 =

1

2
(h1 − h2)

If f ∈ H0 then f = f(q0)P01 + ∂nf(q0)P02 + ∂T f(q0)P03

We introduce the following basis {Pjk} where

∆nPjk(q0) = δnjδk1

∆n∂nPjk(q0) = δnjδk2

∆n∂TPjk(q0) = δnjδk3

This is known as the monomial basis.
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Polynomials on SG: The monomial basis

Figure: P31



Polynomials on SG: The monomial basis

Figure: P02



Polynomials on SG: The monomial basis

Figure: P82



Polynomials on SG: The monomial basis

Figure: P53



Polynomials on SG: The monomial basis

Note that Pj1 and Pj2 are symmetric across the line through q0
and F1q2 and Pj3 is anti-symmetric. We thus refer to them as the
symmetric and anti-symmetric families.

Using the monomial basis, we define can functions as power
series expansions:

f =

∞∑
n=0

3∑
k=1

cnkPnk(x)

If |cnk| ≤Mrn for some r < λ2, the power series converges
uniformly. We call such functions entire analytic.
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Orthogonal polynomials

The space of polynomials on R, denoted P (R) can be endowed
with the following inner product:

〈f, g〉 =

ˆ
R
f(x)g(x)w(x) dx

where w(x) ∈ L1(R)

Given an inner product space, we can generate an orthogonal
basis using the Gram-Schmidt process. The resulting
polynomials are called orthogonal polynomials

Common examples for w(x) include χ[−1,1](1− x)α(1 + x)β, e−x
2
,

and χ[0,∞)e
−x
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Orthogonal Polynomials

w(x) Name

χ[−1,1](1− x)α(1 + x)β Jacobi

e−x
2

Hermite
χ[0,∞)e

−x Laguerre

Table: Classical orthogonal polynomials on R

There are two special cases of Jacobi polynomials:

When α = β = 0, they are known as the Legendre
polynomials. In this case the inner product is the standard L2

product on [−1, 1]: 〈f, g〉L2 =
´ 1
−1 fg dx.

When α = β = 1/2, they are known as the Chebyshev
polynomials. Here the weight function is

√
1− x2
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Orthogonal Polynomials

Classical orthogonal polynomials, denoted Pn satisfy the following
properties:

1 Q(x)P ′′n (x) + L(x)P ′n(x) + λnPn(x) = 0 where Q,L are
polynomials and λn ∈ R

2 Pn(x) = 1
enw(x)

dn

dxn
(w(x)[Q(x)]n) This is known as the

Rodrigues’ formula.

3 Two term recurrence: anxPn(x) = bnPn+1(x) + cnPn−1(x)

Okoudjou et. al (2012) found the Legendre polynomials on SG (the
orthogonal polynomials with respect to the L2 inner product). We
will study orthogonal polynomials with respect to other inner
products, usually involving the Laplacian. These will be known as the
Sobolev inner products.
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Origin of Sobolev Orthogonal Polynomials

Idea (Lewis): Given f ∈ L2[−1, 1], find polynomial g with deg
g ≤ n such that g minimizes the quantity ‖f − g‖H , where
‖h‖2H :=

´
(h2(x)dx+ h′2(x))dx

Solution: g̃ =
n∑
i=0
〈f, ei〉H ei, {ei} orthonormal basis

Core idea: Approximate a function by polynomials as close as
possible.
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Generalization to SG

Unless specified we will consider the Sobolev inner product
〈f, g〉H := 〈f, g〉L2 + λ〈∆f,∆g〉L2 for some nonnegative constant
λ, where 〈f, g〉L2 :=

´
fg dµ for a regular Borel probability

measure µ that is symmetric with respect to the line passing
through q0 and the midpoint of the side opposing q0

the monic Sobolev polynomials {Snk(x;λ)}∞n=0(For simplicity,
write as {Sn}∞n=0), is obtained by Gram-Schmidt Process.



Generalization to SG

Unless specified we will consider the Sobolev inner product
〈f, g〉H := 〈f, g〉L2 + λ〈∆f,∆g〉L2 for some nonnegative constant
λ, where 〈f, g〉L2 :=

´
fg dµ for a regular Borel probability

measure µ that is symmetric with respect to the line passing
through q0 and the midpoint of the side opposing q0

the monic Sobolev polynomials {Snk(x;λ)}∞n=0(For simplicity,
write as {Sn}∞n=0), is obtained by Gram-Schmidt Process.



Recurrence (Case 1: k=2 or 3)

Theorem: When k = 2 or 3 we have the following recurrence relation
for n ≥ −1, where S−1 := 0.

Sn+2 − anSn+1 − bnSn = fn+2

where fn+2 := G(pn+1), and G(g)(x) := −
´
SGG(x, y)gn+1(y)dy,

an = −〈fn+2Sn+1〉H
‖Sn+1‖2H

bn = −〈fn+2, Sn〉H
‖Sn‖2H



Recurrence: (Case 1: k=2 or 3)

Remark: When k = 2 or 3, the same recursive relation is still valid if
we replace the Sobolev inner product by 〈f, g〉H :=

〈f, g〉L2 + λ1〈∆f,∆g〉L2 + λ2 ε(f, g)+

[f(q0) f(q1) f(q2)]M [g(q0) g(q1) g(q2)]
T

for nonnegative constants λ1 and λ2, positive semidefinite 3× 3
matrix M



Recurrence (Case 1: k=2 or 3)

Corollary: When k = 2 or 3, (an, bn) is the unique solution to the
system anSn+1(q1) + bnSn(q1) = Sn+2(q1) and
an∂nSn+1(q1) + bn∂nSn(q1) = ∂nSn+2(q1). In particular, the matrix[
Sn+1(q1) Sn(q1)
∂nSn+1(q1) ∂nSn(q1)

]
is non-singular for any integer n ≥ 0.



Recurrence: (Case 1: k=2 or 3)

Asymptotics: Firstly, We are interested in the case when
λ→∞.

Estimates: ‖Sn‖2H = Θ(λ), |an| = O(λ−1), |bn| = Θ(λ−1)

‖∆Sn‖2L2 ≤ λ−1‖G‖2L2‖pn−1‖2L2 + ‖pn−1‖2L2

‖Sn‖L∞ ≤ C(1 + λ−
1
2 )‖pn−1‖L2

(C is independent of n and λ)
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Recurrence (Case 1: k=2 or 3, Asymptotic)

Theorem: Suppose k = 2 or 3. Then for any n ≥ 3, Sn(x;λ)
converges to fn uniformly in x as λ→∞. Consequently ∆Sn → pn−1
uniformly as λ→∞. Also,

λ(Sn(λ)− fn)→ −〈fn, fn−1〉L2

‖pn−2‖2L2

fn−1 −
‖pn−1‖2L2

‖pn−3‖2L2

fn−2

uniformly in x as λ→∞



Recurrence (Case 2: k=1)

More complicated!

Requires a conjecture: ∂nft(q0) 6= 0, where ft := G(pt−1).

Theorem: Let S−1 := 0, k=1, fn+2 = G(pn+1) and suppose that
∂nfn+2(q0) 6= 0, then
Sn+3 − anSn+2 − bnSn+1 − cnSn = fn+3 + dnfn+2, The matrix Sn+2(q1) Sn+1(q1) Sn(q1)

∂nSn+2(q1) ∂nSn+1(q1) ∂nSn(q1)
Sn+2(q0) Sn+1(q0) Sn(q0)

 (1)

is non-singular.
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Recurrence (Case 2: k=1, Asymptotics)

Theorem: Assume the normal derivative conjecture is true. Then
there exists a sequence of monic polynomials {gn}∞n=0 independent of
λ such that for any n ≥ 0, deg gn = n, Sn converges uniformly in x to
gn. And gn+3 + dngn+2 = fn+3 + dnfn+2 for any n ≥ 1. For the basic

cases, g0 = p0, g1 = p1, g2 + d−1g1 = f2 + d−1f1 −
〈f2+d−1f1,g0〉L2

‖g0‖2
L2

g0,

and g3 + d0g2 = f3 + d0f2 −
〈f3+d0f2,g0〉L2

‖g0‖2
L2

g0. Moreover, for any α < 1,

n ≥ 0, lim
λ→∞

λα(Sn(λ)− gn) = 0 uniformly in x.



Recurrence: Generalization (k=2 or 3)

Consider the inner product: 〈f, g〉Hm =
m∑
l=0

λl
´
SG ∆lf∆lg dµ

Theorem: Sn+m+1 −Fn+m+1 −
2m−1∑
l=0

an,lSn+m−l = 0, where

Fn+m+1 := Gmpn+1

Remark: It is still true if we consider

〈f, g〉Hm =
m∑
l=0

λl
´
SG ∆lf∆lg dµ+

m−1∑
l=0

βl ε(∆
lf,∆lg) +

m−1∑
l=0

[∆lf(q0) ∆lf(q1) ∆lf(q2)]Ml[∆
lg(q0) ∆lg(q1) ∆lg(q2)]

T , where

Ml are positive definite 3× 3 matrices.
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Recurrence: Generalization (k=2 or 3)

Asymptotic: we consider the case λm →∞, and the other parameters
are bounded.
Theorem: Suppose k = 2 or 3, and there exists M > 0 such that
λl ≤M for any l < m. Then for any n ≥ 2m+ 1, we have

‖Sn −Fn‖L2 ≤ C(n,M,m, µ)λ−1m

Consequently, lim
λm→∞

‖∆iSn − Gm−ipn−m‖L∞ → 0 for any 0 ≤ i ≤ m.



Zeros: Continuous functions

Theorem (Topological result): Let f be a continuous function
defined on SG. Suppose f has finitely many zeros. Let Z0 be the
intersection of zero set Z of f and V ∗. Then for any connected
component D in SG \ Z0, either f ≥ 0 on D or f ≤ 0 on D.



Zeros: Entire Analytic functions

Theorem: Suppose

f(x) =
∞∑
j=t1

cj1P
(0)
j1 (x) +

∞∑
j=t2

cj2P
(0)
j2 (x) +

∞∑
j=t3

cj3P
(0)
j3 (x) where ct1,1,

ct2,2 and ct3,3 are nonzero and has zero set Z. Then

1 Z is compact and nowhere dense in SG.

2 If t3 < t1 − 1 and t3 < t2, then f has infinitely many zeros that
has limit point q0. Moreover, suppose the conjecture Pj1 > 0 is
true, t1 ≤ t2 and t1 ≤ t3. Then q0 has a neighborhood U such
that Z ∩ U ⊂ {q0}.
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Zeros of OPs

How many zeros do the Orthogonal Polynomials have?

Figure: Antisymmetric Sobolev OP of Degree 2



Counting Zeros

Figure: Edge Zeros of Orthogonal Polynomials

Notice that some polynomials have more than 3n+ 3 zeros...



Polynomial Interpolation and Quadrature on SG

Questions:

Can we use polynomials (orthogonal or otherwise) to accurately
interpolate functions?

Can we obtain an analog of Gauss-Legendre quadrature on SG?

Can we develop an algorithm for polynomial quadrature on SG
and determine error estimates for it?



Interpolation

Polynomials of degree n can have more than 3n+ 3 zeros on SG.

We need to establish the invertibility of

Mn =

 P1(x1) P1(x2) . . . P1(x3n+3)
...

...
. . .

...
P3n+3(x1) P3n+3(x2) . . . P3n+3(x3n+3)





Interpolation

If we choose a rotationally symmetric set of points, the interpolation
matrix Mn becomes circulant-block. This enables us to prove the
invertibility of M2.

Figure: Interpolation Set for n = 3



Interpolation

n |Mn|

1 -1.744e-06
2 1.066e-19
3 -4.200e-41
4 -2.058e-69
5 6.788e-110
6 -1.347e-163
7 5.044e-232
8 -4.976e-316

Table: Determinants of Mn



Interpolation

The interpolation matrix for the Pjk polynomials on V1 points is
invertible (by computation)

By choosing n+ 1 points on the left side of Vn along with their
rotations, the interpolation matrix becomes circulant-block.
These matrices are computationally invertible up to at least
n = 50.

The general case is unknown.



Quadrature

Gauss-Legendre quadrature on R requires the polynomial
division algorithm on R. However, we do not have this on SG.

We have a pseudo-division algorthim on SG, but the quotient is a
linear combination of powers of the Green’s operator:

Qf =
1

bm

n−m∑
i=0

c(i)G(n−m−i)



Quadrature

We can try to use n-Harmonic spline quadrature, but this comes
back to the interpolation problem since we need to solve P1(x1) P1(x2) . . . P1(x3n+3)

...
...

. . .
...

P3n+3(x1) P3n+3(x2) . . . P3n+3(x3n+3)


 w1

...
w3n+3

 =


´
SG P01

...´
SG Pn3





N-Harmonic Extension: The Solution to Many
Polynomial Problems on SG

Is there an algorithm to extend a function defined on 3n+ 3
vertices of Vn n-Harmonically?

Given this algorithm, we have the following quadrature error
estimate: ∣∣∣∣Imn (f)−

ˆ
SG

f

∣∣∣∣ ≤ c15−(n+1)(m−n)‖∆(n+1)f‖∞



Outstanding Questions Regarding Polynomials on SG

1 Is ∂nfn 6= 0 ∀ n?

2 Is Pj1 > 0 except at q0?

3 Interpolation problem: Does sampling an n degree polynomial on
any 3n+ 3 points uniquely determine the polynomial?

Questions 2 and 3 can be solved given an n-Harmonic Extension
Algorithm.



Extremal Points of Polynomials

Definition of local extrema:

1 For a function u defined on SG and x ∈ SG, we say that x is a
local maximum (minimum) of u if ∃ neighborhood U s.t.
x ∈ U ⊆ SG and ∀y ∈ U , we have u(x) ≥ u(y) (or u(x) ≤ u(y)).

2 For a function u defined on SG and x = Fwqn = Fw′qn′ ∈ SG, we
say that x is a local edge maximum (minimum) of u if ∃ M
s.t. ∀m ≥M , u(x) ≥ u(FwF

m
n qj) for j = n− 1, n+ 1 and

u(x) ≥ u(Fw′F
m
n′ qj′) for j′ = n′ − 1, n′ + 1. [u is larger than a

discrete set of points on all neighboring edges]

⇒ Local edge extrema are weaker than local extrema
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Extremal Points of Polynomials - General Case

Theorem:
(Necessary conditions for x to be a local edge extrema of u)

1 If x ∈ V0 is on the boundary, then ∂nu(x) ≥ 0 if x is a local
maximum (or ∂nu(x) ≤ 0 for x a local minimum)

2 If x is not on the boundary, then ∂nu(x) = 0, and ∆u(x) ≤ 0 if x
is a local maximum (or ∆u(x) ≥ 0 if x is a local maximum)

Corollary: P11 ≥ 0



Extremal Points of Polynomials - General Case

Theorem:
(Sufficient conditions for x to be a local edge extrema of u)

1 Let u ∈ dom∆µ and x = Fwqn = Fw′qn′ be a junction point

satisfying


∆u(x) < 0 (or ∆u(x) > 0)

∂nu(Fwqn) = ∂nu(Fw′qn′) = 0

∂Tu(Fwqn) = ∂Tu(Fw′qn′) = 0

Then t is a local edge maximum (or minimum) of u on SG.

⇒ This only holds for local edge maximum, not local maximum.
(Normal derivatives and tangential derivatives are very weak
characterizations of local behavior)



Extremal Points of Polynomials - Harmonic Case

Lemma: (Behavior of Harmonic Function on Outmost Edges)
Let h be a harmonic function on SG, and we consider the edge
between q0, q1 ∈ V0, assuming h(q0) ≤ h(q1).

1 If ∂nh(q0) · ∂nh(q1) ≤ 0, then h is increasing from q0 to q1.

2 If ∂nh(q0), ∂nh(q1) > 0, then h first decrease then increase from
q0 to q1.

3 If ∂nh(q0), ∂nh(q1) < 0, then h first increase then decrease from
q0 to q1.

⇒ Behavior of harmonic functions on edges is completely
characterized by sign of normal derivatives on V0.



Extremal Points of Polynomials - Harmonic Case

Theorem: (Local Extrema of Harmonic Functions)
Let h be a non-constant harmonic function: h(q0) = α, h(q1) = β,
h(q2) = γ with α ≤ β ≤ γ not all equal.

1 If ∂nh(q1) = 0, then q0 is the unique local minimum and q2 is the
unique local maximum.

2 If ∂nh(q1) < 0, then q0, q1 are the only local minima and q2 is the
unique local maximum.

3 If ∂nh(q1) > 0, then q0 is the unique local minimum and q1, q2 are
the only local maxima.



Extremal Points of Polynomials - Biharmonic Case

Theorem:
(Necessary conditions for local extrema of biharmonic functions)

Let u ∈ H1 be a nonconstant biharmonic function on SG, and
x = Fwqn = Fw′qn′ be a junction point that is a local extrema of u.
Then we have:

1 ∂nu(x) = 0.

2 Either ∆u(x) 6= 0 or ∂n∆u(x) 6= 0.

⇒ Proof: From the properties of antisymmetric functions.



Extremal Points of Polynomials - Biharmonic Case

Theorem:
(Sufficient conditions for local extrema of biharmonic functions)

Let u ∈ H1 be a function on SG, and x = Fwqn = Fw′qn′ be a junction

point. Suppose


∂nu(x) = 0

∂Tu(x) = 0

∂n∆u(x) = 0

∂T∆u(x) = 0

, then x is a local optimum of u.

⇒ This comes from the property that P11 achieves global
maximum/minimum on the boundary.



Extremal Points of Polynomials - Summary and
Questions

Recap:

1 Define local extrema and local edge extrema

2 Local edge extrema + functions in the domain of Laplacian

3 Local extrema + harmonic/biharmonic functions

Questions to consider:

1 Can any of the above be generalized to n-harmonic functions?

2 Is it possible to design an efficient algorithm to find local
extrema of n-harmonic functions, given that we can evaluate the
n-jet at all points?



Chebyshev Polynomials on SG

Definition of Chebyshev Polynomials on [−1, 1]:
The nth Chebyshev polynomial Tn(x) : [−1, 1]→ R is defined as
Tn(x) := cos(n cos−1(x))

An important property of Chebyshev Polynomials on [−1, 1] is the
extremal principle:
∀P (x) : [−1, 1]→ R, monic polynomial of degree n,
||21−nTn(x)||u ≤ ||P (x)||u, where ||· ||u is the uniform norm of
functions.

Remark: the leading coefficient of Tn(x) is 21−n, and hence 21−nTn(x)
is the monic polynomial on [−1, 1] that minimizes the uniform norm.
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Chebyshev Polynomials on SG

The revised definition of Chebyshev Polynomials on any compact
K ⊆ R:
The nth Chebyshev polynomial Tn(x) : K → R is defined as the
monic polynomial of degree n that has the smallest uniform norm of
all monic polynomial of degree n.

Fix k, then the monic polynomial of degree j is a polynomial of
the form

∑j
l=0 clPlk, where cj = 1.

Definition of the jth Chebyshev Polynomials of family k on SG:
Fix k = 1, 2, 3, then the jth Chebyshev Polynomials of family k,
Tjk(x), is the monic polynomial of degree j, such that ∀P (x) a monic
polynomial of degree j, ||Tjk||u ≤ ||P ||u
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Partial Results on H1

The problem right now reduces to for fixed k, find ak, such that
P1k(x) + akP0k(x) has the smallest uniform norm of all monic
polynomial of degree 1.

For the 1-family, we have an exact answer, that
T11(x) = P11(x)− 1

12P01(x)

This is because P11 ≥ 0 and hence it achieves the minimum value
0 at q0 and the maximum value 1

6 at q1 and q2.

Unfortunately, the proof that P11 ≥ 0 is overcomplicated and
cannot be generalized to arbitrary j.
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Image of T11(x)

Figure: Plot of Chebyshev polynomial of order 1 of family 1, with a = − 1
12 .

The boundary node on the left is q1, the one on the right is q2, and the
boundary node on the back is q0.



Partial Results on H1

For the 2nd Chebyshev polynomials of family 2 and the family 3,
we only have experimental result, and our experiments show that
a2 = 0.0619339 and a3 = 0.0275013

We found those values by firstly determining loose bounds of a2
and a3, which are [−2β1

β0
, 0] = [− 8

45 , 0] for a2 and

[−2α1
α0
, 0] = [− 1

15 , 0] for a3.

Then we partition the intervals, test out each ak, and look for the
ak that gives the smallest uniform norm.



Image of T12(x)

Figure: Plot of Chebyshev polynomial of order 1 of family 2, with
a ≈ −0.0619339. The boundary node on the left is q1, the one on the right is
q2, and the hidden boundary node on the back is q0.



Image of T13(x)

Figure: Plot of Chebyshev polynomial of order 1 of family 3, with
a ≈ −0.02750235. The boundary node on the left is q1, the one on the right
is q2, and the hidden boundary node on the back is q0.



Alternating Property of Chebyshev Polynomials

A degree n polynomial Pn(x) defined on a compact set K ⊆ R,
has an alternating set, if ∃{xj}nj=0 with x0 < x1 < ... < xn, so

that Pn(xj) = (−1)n−j ||Pn(x)||u.

The Alternation Theorem: A monic polynomial of degree n is
the Chebyshev polynomial if and only if it has an alternating set.

The experimental results also show that the absolute value of the
minimum and the maximum of the monic polynomials become
closer when a2 and a3 approach the values that minimize their
uniform norms.



Alternating Property of Chebyshev Polynomials

Assume that there exist an a, such that Q(x) := P13(x) + aP03(x)

achieves maximum norm at two distinct points y ∈
∞⋃
m=0

Fm0 F1SG

and z ∈
∞⋃
m=0

Fm0 F1SG, and z = −y. Then Q(x) is the 1st

Chebyshev polynomial of the 3-family.

Assume Q(x) is not the first Chebyshev polynomial of the
3-family. Then ||T13||∞ < ||Q||∞. This implies that
|T13(x)| < |Q(x)| at y and z. Thus T13 −Q(x) cannot be both
positive or negative at y and z. Since both T13(x) and Q(x) are
monic, T13−Q(x) is spanned by P03, and hence T13−Q(x) has to
be both positive or negative at y and z. We have a contradiction.



Further Questions

Find explicit formulas for Chebyshev polynomials of any degree.

Replicate the alternation theorem to polynomials on SG.

Study the orthogonality.

Find the recurrence relation, if any.
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