Chebyshev and Sobolev Orthogonal Polynomials

Max Jiang, Tian Lan, Shashank Sule, Sreeram Venkat, Xiaoduo Wang
Advisors: Robert Strichartz and Kasso Okoudjou

Cornell SPUR 2019: Analysis on Fractals

$$
\text { July 25, } 2019
$$

Preliminaries

■ Let $V_{0}=\left\{q_{0}, q_{1}, q_{2}\right\} \in \mathbb{R}^{2}$ and $F_{i}(x)=\frac{1}{2}\left(x+q_{i}\right)$ for $i=0,1,2$. Then

$$
S G=\bigcup_{m=1}^{\infty} \bigcup_{|w|=m} F_{w}\left(V_{0}\right)
$$

Preliminaries

- Let $V_{0}=\left\{q_{0}, q_{1}, q_{2}\right\} \in \mathbb{R}^{2}$ and $F_{i}(x)=\frac{1}{2}\left(x+q_{i}\right)$ for $i=0,1,2$. Then

$$
S G=\overline{\bigcup_{m=1}^{\infty} \bigcup_{|w|=m} F_{w}\left(V_{0}\right)}
$$

- We work on the finite graph approximation $V_{m}=\bigcup_{|w|=m} F_{w}\left(V_{0}\right)$

Figure: V_{4}

Preliminaries

■ Let $u: S G \mapsto \mathbb{R}$. Then the Laplacian Δ_{μ} is defined as

$$
\Delta_{\mu} u(x)=\frac{3}{2} \lim _{m \rightarrow \infty} 5^{m} \Delta_{m} u(x)
$$

Preliminaries

■ Let $u: S G \mapsto \mathbb{R}$. Then the Laplacian Δ_{μ} is defined as

$$
\Delta_{\mu} u(x)=\frac{3}{2} \lim _{m \rightarrow \infty} 5^{m} \Delta_{m} u(x)
$$

- $G: S G \times S G \mapsto R$ is called Green's Function where

$$
-\Delta u=f,\left.u\right|_{V_{0}}=0 \Longleftrightarrow u(x)=\int_{S G} G(x, y) f(y) d \mu
$$

Preliminaries

■ Let $u: S G \mapsto \mathbb{R}$. Then the Laplacian Δ_{μ} is defined as

$$
\Delta_{\mu} u(x)=\frac{3}{2} \lim _{m \rightarrow \infty} 5^{m} \Delta_{m} u(x)
$$

- $G: S G \times S G \mapsto R$ is called Green's Function where

$$
-\Delta u=f,\left.u\right|_{V_{0}}=0 \Longleftrightarrow u(x)=\int_{S G} G(x, y) f(y) d \mu
$$

- $\partial_{n} u\left(q_{i}\right)$ is the normal derivative of u at q_{i} where

$$
\partial_{n} u\left(q_{i}\right)=\lim _{m \rightarrow \infty}\left(\frac{5}{3}\right)^{m}\left(2 u\left(q_{i}\right)-u\left(F_{i+1}^{m} q_{i}\right)-u\left(F_{i-1}^{m} q_{i}\right)\right)
$$

Preliminaries

■ Let $u: S G \mapsto \mathbb{R}$. Then the Laplacian Δ_{μ} is defined as

$$
\Delta_{\mu} u(x)=\frac{3}{2} \lim _{m \rightarrow \infty} 5^{m} \Delta_{m} u(x)
$$

- $G: S G \times S G \mapsto R$ is called Green's Function where

$$
-\Delta u=f,\left.u\right|_{V_{0}}=0 \Longleftrightarrow u(x)=\int_{S G} G(x, y) f(y) d \mu
$$

- $\partial_{n} u\left(q_{i}\right)$ is the normal derivative of u at q_{i} where

$$
\partial_{n} u\left(q_{i}\right)=\lim _{m \rightarrow \infty}\left(\frac{5}{3}\right)^{m}\left(2 u\left(q_{i}\right)-u\left(F_{i+1}^{m} q_{i}\right)-u\left(F_{i-1}^{m} q_{i}\right)\right)
$$

- $\partial_{T} u\left(q_{i}\right)$ is the tangential derivative of u at q_{i} where

$$
\partial_{T} u\left(q_{i}\right)=\lim _{m \rightarrow \infty} 5^{m}\left(u\left(F_{i+1}^{m} q_{i}\right)-u\left(F_{i-1}^{m} q_{i}\right)\right)
$$

Polynomials on SG : The space \mathcal{H}_{j}

■ Let $f: S G \mapsto \mathbb{R}$. Then f is a j-degree polynomial iff $\Delta^{j+1} f=0$ and $\Delta^{j} f \neq 0$, i.e f is j-harmonic but not ($j-1$)-harmonic.

Polynomials on SG: The space \mathcal{H}_{j}

■ Let $f: S G \mapsto \mathbb{R}$. Then f is a j-degree polynomial iff $\Delta^{j+1} f=0$ and $\Delta^{j} f \neq 0$, i.e f is j-harmonic but not ($j-1$)-harmonic.

- The space of polynomials with degree $\leq j$ is denoted \mathcal{H}_{j}

Polynomials on SG : The space \mathcal{H}_{j}

■ Let $f: S G \mapsto \mathbb{R}$. Then f is a j-degree polynomial iff $\Delta^{j+1} f=0$ and $\Delta^{j} f \neq 0$, i.e f is j-harmonic but not ($j-1$)-harmonic.

- The space of polynomials with degree $\leq j$ is denoted \mathcal{H}_{j}

■ Let $f \in \mathcal{H}_{j}$. Then f is determined uniquely by the values $\left(f\left(q_{0}\right), f\left(q_{1}\right), f\left(q_{2}\right), \Delta f\left(q_{0}\right), \Delta f\left(q_{1}\right), \ldots, \Delta^{j} f\left(q_{2}\right)\right)$

Polynomials on SG : The space \mathcal{H}_{j}

$■$ Let $f: S G \mapsto \mathbb{R}$. Then f is a j-degree polynomial iff $\Delta^{j+1} f=0$ and $\Delta^{j} f \neq 0$, i.e f is j-harmonic but not ($j-1$)-harmonic.

- The space of polynomials with degree $\leq j$ is denoted \mathcal{H}_{j}

■ Let $f \in \mathcal{H}_{j}$. Then f is determined uniquely by the values $\left(f\left(q_{0}\right), f\left(q_{1}\right), f\left(q_{2}\right), \Delta f\left(q_{0}\right), \Delta f\left(q_{1}\right), \ldots, \Delta^{j} f\left(q_{2}\right)\right)$

- $\operatorname{dim}\left(\mathcal{H}_{j}\right)=3 j+3$

Polynomials on SG : The space \mathcal{H}_{j}

$■$ Let $f: S G \mapsto \mathbb{R}$. Then f is a j-degree polynomial iff $\Delta^{j+1} f=0$ and $\Delta^{j} f \neq 0$, i.e f is j-harmonic but not ($j-1$)-harmonic.

- The space of polynomials with degree $\leq j$ is denoted \mathcal{H}_{j}

■ Let $f \in \mathcal{H}_{j}$. Then f is determined uniquely by the values $\left(f\left(q_{0}\right), f\left(q_{1}\right), f\left(q_{2}\right), \Delta f\left(q_{0}\right), \Delta f\left(q_{1}\right), \ldots, \Delta^{j} f\left(q_{2}\right)\right)$

- $\operatorname{dim}\left(\mathcal{H}_{j}\right)=3 j+3$
- A natural basis for \mathcal{H}_{j} is the family of functions $\left\{f_{n k}\right\}$ where

$$
\Delta^{m} f_{n k}\left(q_{i}\right)=\delta_{m n} \delta_{k i}
$$

Polynomials on SG : The space \mathcal{H}_{j}

$■$ Let $f: S G \mapsto \mathbb{R}$. Then f is a j-degree polynomial iff $\Delta^{j+1} f=0$ and $\Delta^{j} f \neq 0$, i.e f is j-harmonic but not ($j-1$)-harmonic.

- The space of polynomials with degree $\leq j$ is denoted \mathcal{H}_{j}

■ Let $f \in \mathcal{H}_{j}$. Then f is determined uniquely by the values $\left(f\left(q_{0}\right), f\left(q_{1}\right), f\left(q_{2}\right), \Delta f\left(q_{0}\right), \Delta f\left(q_{1}\right), \ldots, \Delta^{j} f\left(q_{2}\right)\right)$

- $\operatorname{dim}\left(\mathcal{H}_{j}\right)=3 j+3$
- A natural basis for \mathcal{H}_{j} is the family of functions $\left\{f_{n k}\right\}$ where

$$
\Delta^{m} f_{n k}\left(q_{i}\right)=\delta_{m n} \delta_{k i}
$$

- For example, the three harmonic functions h_{i} where $h_{i}\left(q_{j}\right)=\delta_{i j}$ form a basis for \mathcal{H}_{0}

Polynomials on SG: The monomial basis

- We want to mimic the case on $I=[0,1]$ where we can expand a function as a Taylor series in terms of basis functions where we use derivative information at one point.

Polynomials on SG: The monomial basis

■ We want to mimic the case on $I=[0,1]$ where we can expand a function as a Taylor series in terms of basis functions where we use derivative information at one point.
■ For example, for harmonic functions, we have the following basis $\left\{P_{0 k}\right\}$ where the tuple of values $\left(u\left(q_{0}\right), \partial_{n} u\left(q_{0}\right), \partial_{T} u\left(q_{0}\right)\right)=e_{k}$: $P_{01}=h_{0}+h_{1}+h_{2} \quad P_{02}=-\frac{1}{2}\left(h_{1}+h_{2}\right) \quad P_{03}=\frac{1}{2}\left(h_{1}-h_{2}\right)$
If $f \in \mathcal{H}_{0}$ then $f=f\left(q_{0}\right) P_{01}+\partial_{n} f\left(q_{0}\right) P_{02}+\partial_{T} f\left(q_{0}\right) P_{03}$

Polynomials on SG: The monomial basis

■ We want to mimic the case on $I=[0,1]$ where we can expand a function as a Taylor series in terms of basis functions where we use derivative information at one point.

- For example, for harmonic functions, we have the following basis $\left\{P_{0 k}\right\}$ where the tuple of values $\left(u\left(q_{0}\right), \partial_{n} u\left(q_{0}\right), \partial_{T} u\left(q_{0}\right)\right)=e_{k}$:

$$
P_{01}=h_{0}+h_{1}+h_{2} \quad P_{02}=-\frac{1}{2}\left(h_{1}+h_{2}\right) \quad P_{03}=\frac{1}{2}\left(h_{1}-h_{2}\right)
$$

If $f \in \mathcal{H}_{0}$ then $f=f\left(q_{0}\right) P_{01}+\partial_{n} f\left(q_{0}\right) P_{02}+\partial_{T} f\left(q_{0}\right) P_{03}$
■ We introduce the following basis $\left\{P_{j k}\right\}$ where

$$
\begin{aligned}
\Delta^{n} P_{j k}\left(q_{0}\right) & =\delta_{n j} \delta_{k 1} \\
\Delta^{n} \partial_{n} P_{j k}\left(q_{0}\right) & =\delta_{n j} \delta_{k 2} \\
\Delta^{n} \partial_{T} P_{j k}\left(q_{0}\right) & =\delta_{n j} \delta_{k 3}
\end{aligned}
$$

This is known as the monomial basis.

Polynomials on SG: The monomial basis

Figure: P_{31}

Polynomials on SG: The monomial basis

Figure: P_{02}

Polynomials on SG: The monomial basis

Figure: P_{82}

Polynomials on SG: The monomial basis

Figure: P_{53}

Polynomials on SG: The monomial basis

■ Note that $P_{j 1}$ and $P_{j 2}$ are symmetric across the line through q_{0} and $F_{1} q_{2}$ and $P_{j 3}$ is anti-symmetric. We thus refer to them as the symmetric and anti-symmetric families.

Polynomials on SG: The monomial basis

■ Note that $P_{j 1}$ and $P_{j 2}$ are symmetric across the line through q_{0} and $F_{1} q_{2}$ and $P_{j 3}$ is anti-symmetric. We thus refer to them as the symmetric and anti-symmetric families.

- Using the monomial basis, we define can functions as power series expansions:

$$
f=\sum_{n=0}^{\infty} \sum_{k=1}^{3} c_{n k} P_{n k}(x)
$$

If $\left|c_{n k}\right| \leq M r^{n}$ for some $r<\lambda_{2}$, the power series converges uniformly. We call such functions entire analytic.

Orthogonal polynomials

■ The space of polynomials on \mathbb{R}, denoted $P(\mathbb{R})$ can be endowed with the following inner product:

$$
\langle f, g\rangle=\int_{\mathbb{R}} f(x) g(x) w(x) d x
$$

where $w(x) \in L^{1}(\mathbb{R})$

Orthogonal polynomials

■ The space of polynomials on \mathbb{R}, denoted $P(\mathbb{R})$ can be endowed with the following inner product:

$$
\langle f, g\rangle=\int_{\mathbb{R}} f(x) g(x) w(x) d x
$$

where $w(x) \in L^{1}(\mathbb{R})$

- Given an inner product space, we can generate an orthogonal basis using the Gram-Schmidt process. The resulting polynomials are called orthogonal polynomials

Orthogonal polynomials

■ The space of polynomials on \mathbb{R}, denoted $P(\mathbb{R})$ can be endowed with the following inner product:

$$
\langle f, g\rangle=\int_{\mathbb{R}} f(x) g(x) w(x) d x
$$

where $w(x) \in L^{1}(\mathbb{R})$

- Given an inner product space, we can generate an orthogonal basis using the Gram-Schmidt process. The resulting polynomials are called orthogonal polynomials
- Common examples for $w(x)$ include $\chi_{[-1,1]}(1-x)^{\alpha}(1+x)^{\beta}, e^{-x^{2}}$, and $\chi_{[0, \infty)} e^{-x}$

Orthogonal Polynomials

$$
\begin{array}{cc}
w(x) & \text { Name } \\
\hline \hline \chi_{[-1,1]}(1-x)^{\alpha}(1+x)^{\beta} & \text { Jacobi } \\
e^{-x^{2}} & \text { Hermite } \\
\chi_{[0, \infty)} e^{-x} & \text { Laguerre }
\end{array}
$$

Table: Classical orthogonal polynomials on \mathbb{R}

Orthogonal Polynomials

$w(x)$	Name
$\chi_{[-1,1]}(1-x)^{\alpha}(1+x)^{\beta}$	Jacobi
$e^{-x^{2}}$	Hermite
$\chi_{[0, \infty)} e^{-x}$	Laguerre

Table: Classical orthogonal polynomials on \mathbb{R}

There are two special cases of Jacobi polynomials:

- When $\alpha=\beta=0$, they are known as the Legendre polynomials. In this case the inner product is the standard L^{2} product on $[-1,1]:\langle f, g\rangle_{L^{2}}=\int_{-1}^{1} f g d x$.
■ When $\alpha=\beta=1 / 2$, they are known as the Chebyshev polynomials. Here the weight function is $\sqrt{1-x^{2}}$

Orthogonal Polynomials

Classical orthogonal polynomials, denoted P_{n} satisfy the following properties:

Orthogonal Polynomials

Classical orthogonal polynomials, denoted P_{n} satisfy the following properties:
$1 Q(x) P_{n}^{\prime \prime}(x)+L(x) P_{n}^{\prime}(x)+\lambda_{n} P_{n}(x)=0$ where Q, L are polynomials and $\lambda_{n} \in \mathbb{R}$

Orthogonal Polynomials

Classical orthogonal polynomials, denoted P_{n} satisfy the following properties:
$1 Q(x) P_{n}^{\prime \prime}(x)+L(x) P_{n}^{\prime}(x)+\lambda_{n} P_{n}(x)=0$ where Q, L are polynomials and $\lambda_{n} \in \mathbb{R}$
$2 P_{n}(x)=\frac{1}{e_{n} w(x)} \frac{d^{n}}{d x^{n}}\left(w(x)[Q(x)]^{n}\right)$ This is known as the Rodrigues' formula.

Orthogonal Polynomials

Classical orthogonal polynomials, denoted P_{n} satisfy the following properties:
$\| Q(x) P_{n}^{\prime \prime}(x)+L(x) P_{n}^{\prime}(x)+\lambda_{n} P_{n}(x)=0$ where Q, L are polynomials and $\lambda_{n} \in \mathbb{R}$
$2 P_{n}(x)=\frac{1}{e_{n} w(x)} \frac{d^{n}}{d x^{n}}\left(w(x)[Q(x)]^{n}\right)$ This is known as the Rodrigues' formula.
3 Two term recurrence: $a_{n} x P_{n}(x)=b_{n} P_{n+1}(x)+c_{n} P_{n-1}(x)$

Orthogonal Polynomials

Classical orthogonal polynomials, denoted P_{n} satisfy the following properties:
$1 Q(x) P_{n}^{\prime \prime}(x)+L(x) P_{n}^{\prime}(x)+\lambda_{n} P_{n}(x)=0$ where Q, L are polynomials and $\lambda_{n} \in \mathbb{R}$
$2 P_{n}(x)=\frac{1}{e_{n} w(x)} \frac{d^{n}}{d x^{n}}\left(w(x)[Q(x)]^{n}\right)$ This is known as the Rodrigues' formula.
3 Two term recurrence: $a_{n} x P_{n}(x)=b_{n} P_{n+1}(x)+c_{n} P_{n-1}(x)$
Okoudjou et. al (2012) found the Legendre polynomials on SG (the orthogonal polynomials with respect to the L^{2} inner product). We will study orthogonal polynomials with respect to other inner products, usually involving the Laplacian. These will be known as the Sobolev inner products.

Origin of Sobolev Orthogonal Polynomials

- Idea (Lewis): Given $f \in L^{2}[-1,1]$, find polynomial g with deg $g \leq n$ such that g minimizes the quantity $\|f-g\|_{H}$, where $\|h\|_{H}^{2}:=\int\left(h^{2}(x) d x+h^{2}(x)\right) d x$

Origin of Sobolev Orthogonal Polynomials

- Idea (Lewis): Given $f \in L^{2}[-1,1]$, find polynomial g with deg $g \leq n$ such that g minimizes the quantity $\|f-g\|_{H}$, where $\|h\|_{H}^{2}:=\int\left(h^{2}(x) d x+h^{2}(x)\right) d x$
- Solution: $\widetilde{g}=\sum_{i=0}^{n}\left\langle f, e_{i}\right\rangle_{H} e_{i},\left\{e_{i}\right\}$ orthonormal basis

Origin of Sobolev Orthogonal Polynomials

- Idea (Lewis): Given $f \in L^{2}[-1,1]$, find polynomial g with deg $g \leq n$ such that g minimizes the quantity $\|f-g\|_{H}$, where $\|h\|_{H}^{2}:=\int\left(h^{2}(x) d x+h^{2}(x)\right) d x$
- Solution: $\widetilde{g}=\sum_{i=0}^{n}\left\langle f, e_{i}\right\rangle_{H} e_{i},\left\{e_{i}\right\}$ orthonormal basis

■ Core idea: Approximate a function by polynomials as close as possible.

Generalization to SG

- Unless specified we will consider the Sobolev inner product $\langle f, g\rangle_{H}:=\langle f, g\rangle_{L^{2}}+\lambda\langle\Delta f, \Delta g\rangle_{L^{2}}$ for some nonnegative constant λ, where $\langle f, g\rangle_{L^{2}}:=\int f g d \mu$ for a regular Borel probability measure μ that is symmetric with respect to the line passing through q_{0} and the midpoint of the side opposing q_{0}

Generalization to SG

■ Unless specified we will consider the Sobolev inner product $\langle f, g\rangle_{H}:=\langle f, g\rangle_{L^{2}}+\lambda\langle\Delta f, \Delta g\rangle_{L^{2}}$ for some nonnegative constant λ, where $\langle f, g\rangle_{L^{2}}:=\int f g d \mu$ for a regular Borel probability measure μ that is symmetric with respect to the line passing through q_{0} and the midpoint of the side opposing q_{0}

- the monic Sobolev polynomials $\left\{S_{n k}(x ; \lambda)\right\}_{n=0}^{\infty}$ (For simplicity, write as $\left\{S_{n}\right\}_{n=0}^{\infty}$), is obtained by Gram-Schmidt Process.

Recurrence (Case 1: $\mathrm{k}=2$ or 3)

Theorem: When $k=2$ or 3 we have the following recurrence relation for $n \geq-1$, where $S_{-1}:=0$.

$$
S_{n+2}-a_{n} S_{n+1}-b_{n} S_{n}=f_{n+2}
$$

where $f_{n+2}:=\mathcal{G}\left(p_{n+1}\right)$, and $\mathcal{G}(g)(x):=-\int_{S G} G(x, y) g_{n+1}(y) d y$,

$$
\begin{aligned}
a_{n} & =-\frac{\left\langle f_{n+2} S_{n+1}\right\rangle_{H}}{\left\|S_{n+1}\right\|_{H}^{2}} \\
b_{n} & =-\frac{\left\langle f_{n+2}, S_{n}\right\rangle_{H}}{\left\|S_{n}\right\|_{H}^{2}}
\end{aligned}
$$

Recurrence: (Case 1: $\mathrm{k}=2$ or 3)

Remark: When $k=2$ or 3 , the same recursive relation is still valid if we replace the Sobolev inner product by $\langle f, g\rangle_{H}:=$

$$
\begin{aligned}
& \langle f, g\rangle_{L^{2}}+\lambda_{1}\langle\Delta f, \Delta g\rangle_{L^{2}}+\lambda_{2} \varepsilon(f, g)+ \\
& {\left[f\left(q_{0}\right) f\left(q_{1}\right) f\left(q_{2}\right)\right] M\left[g\left(q_{0}\right) g\left(q_{1}\right) g\left(q_{2}\right)\right]^{T}}
\end{aligned}
$$

for nonnegative constants λ_{1} and λ_{2}, positive semidefinite 3×3 matrix M

Recurrence (Case 1: $\mathrm{k}=2$ or 3)

Corollary: When $k=2$ or $3,\left(a_{n}, b_{n}\right)$ is the unique solution to the system $a_{n} S_{n+1}\left(q_{1}\right)+b_{n} S_{n}\left(q_{1}\right)=S_{n+2}\left(q_{1}\right)$ and
$a_{n} \partial_{n} S_{n+1}\left(q_{1}\right)+b_{n} \partial_{n} S_{n}\left(q_{1}\right)=\partial_{n} S_{n+2}\left(q_{1}\right)$. In particular, the matrix $\left[\begin{array}{cc}S_{n+1}\left(q_{1}\right) & S_{n}\left(q_{1}\right) \\ \partial_{n} S_{n+1}\left(q_{1}\right) & \partial_{n} S_{n}\left(q_{1}\right)\end{array}\right]$ is non-singular for any integer $n \geq 0$.

Recurrence: (Case 1: $\mathrm{k}=2$ or 3)

- Asymptotics: Firstly, We are interested in the case when $\lambda \rightarrow \infty$.

Recurrence: (Case 1: $\mathrm{k}=2$ or 3)

■ Asymptotics: Firstly, We are interested in the case when $\lambda \rightarrow \infty$.
■ Estimates: $\left\|S_{n}\right\|_{H}^{2}=\Theta(\lambda),\left|a_{n}\right|=O\left(\lambda^{-1}\right),\left|b_{n}\right|=\Theta\left(\lambda^{-1}\right)$

$$
\begin{gathered}
\left\|\Delta S_{n}\right\|_{L^{2}}^{2} \leq \lambda^{-1}\|G\|_{L^{2}}^{2}\left\|p_{n-1}\right\|_{L^{2}}^{2}+\left\|p_{n-1}\right\|_{L^{2}}^{2} \\
\left\|S_{n}\right\|_{L^{\infty}} \leq C\left(1+\lambda^{-\frac{1}{2}}\right)\left\|p_{n-1}\right\|_{L^{2}}
\end{gathered}
$$

(C is independent of n and λ)

Recurrence (Case 1: $\mathrm{k}=2$ or 3 , Asymptotic)

Theorem: Suppose $k=2$ or 3 . Then for any $n \geq 3, S_{n}(x ; \lambda)$ converges to f_{n} uniformly in x as $\lambda \rightarrow \infty$. Consequently $\Delta S_{n} \rightarrow p_{n-1}$ uniformly as $\lambda \rightarrow \infty$. Also,

$$
\lambda\left(S_{n}(\lambda)-f_{n}\right) \rightarrow-\frac{\left\langle f_{n}, f_{n-1}\right\rangle_{L^{2}}}{\left\|p_{n-2}\right\|_{L^{2}}^{2}} f_{n-1}-\frac{\left\|p_{n-1}\right\|_{L^{2}}^{2}}{\left\|p_{n-3}\right\|_{L^{2}}^{2}} f_{n-2}
$$

uniformly in x as $\lambda \rightarrow \infty$

Recurrence (Case 2: k=1)

■ More complicated!

Recurrence (Case 2: k=1)

■ More complicated!

- Requires a conjecture: $\partial_{n} f_{t}\left(q_{0}\right) \neq 0$, where $f_{t}:=\mathcal{G}\left(p_{t-1}\right)$.

Recurrence (Case 2: k=1)

■ More complicated!
■ Requires a conjecture: $\partial_{n} f_{t}\left(q_{0}\right) \neq 0$, where $f_{t}:=\mathcal{G}\left(p_{t-1}\right)$.
■ Theorem: Let $S_{-1}:=0, \mathrm{k}=1, f_{n+2}=\mathcal{G}\left(p_{n+1}\right)$ and suppose that $\partial_{n} f_{n+2}\left(q_{0}\right) \neq 0$, then $S_{n+3}-a_{n} S_{n+2}-b_{n} S_{n+1}-c_{n} S_{n}=f_{n+3}+d_{n} f_{n+2}$, The matrix

$$
\left[\begin{array}{ccc}
S_{n+2}\left(q_{1}\right) & S_{n+1}\left(q_{1}\right) & S_{n}\left(q_{1}\right) \tag{1}\\
\partial_{n} S_{n+2}\left(q_{1}\right) & \partial_{n} S_{n+1}\left(q_{1}\right) & \partial_{n} S_{n}\left(q_{1}\right) \\
S_{n+2}\left(q_{0}\right) & S_{n+1}\left(q_{0}\right) & S_{n}\left(q_{0}\right)
\end{array}\right]
$$

is non-singular.

Recurrence (Case 2: k=1, Asymptotics)

Theorem: Assume the normal derivative conjecture is true. Then there exists a sequence of monic polynomials $\left\{g_{n}\right\}_{n=0}^{\infty}$ independent of λ such that for any $n \geq 0, \operatorname{deg} g_{n}=n, S_{n}$ converges uniformly in x to g_{n}. And $g_{n+3}+d_{n} g_{n+2}=f_{n+3}+d_{n} f_{n+2}$ for any $n \geq 1$. For the basic cases, $g_{0}=p_{0}, g_{1}=p_{1}, g_{2}+d_{-1} g_{1}=f_{2}+d_{-1} f_{1}-\frac{\left.\overline{\langle f}_{2}+d_{-1} f_{1}, g_{0}\right\rangle_{L^{2}}}{\left\|g_{0}\right\|_{L^{2}}^{2}} g_{0}$, and $g_{3}+d_{0} g_{2}=f_{3}+d_{0} f_{2}-\frac{\left\langle f_{3}+d_{0} f_{2}, g_{0}\right\rangle_{L^{2}}}{\left\|g_{0}\right\|_{L^{2}}^{2}} g_{0}$. Moreover, for any $\alpha<1$, $n \geq 0, \lim _{\lambda \rightarrow \infty} \lambda^{\alpha}\left(S_{n}(\lambda)-g_{n}\right)=0$ uniformly in x.

Recurrence: Generalization (k=2 or 3)

- Consider the inner product: $\langle f, g\rangle_{H^{m}}=\sum_{l=0}^{m} \lambda_{l} \int_{S G} \Delta^{l} f \Delta^{l} g d \mu$

Recurrence: Generalization (k=2 or 3)

■ Consider the inner product: $\langle f, g\rangle_{H^{m}}=\sum_{l=0}^{m} \lambda_{l} \int_{S G} \Delta^{l} f \Delta^{l} g d \mu$ - Theorem: $S_{n+m+1}-\mathcal{F}_{n+m+1}-\sum_{l=0}^{2 m-1} a_{n, l} S_{n+m-l}=0$, where $\mathcal{F}_{n+m+1}:=\mathcal{G}^{m} p_{n+1}$

Recurrence: Generalization (k=2 or 3)

- Consider the inner product: $\langle f, g\rangle_{H^{m}}=\sum_{l=0}^{m} \lambda_{l} \int_{S G} \Delta^{l} f \Delta^{l} g d \mu$ - Theorem: $S_{n+m+1}-\mathcal{F}_{n+m+1}-\sum_{l=0}^{2 m-1} a_{n, l} S_{n+m-l}=0$, where $\mathcal{F}_{n+m+1}:=\mathcal{G}^{m} p_{n+1}$
■ Remark: It is still true if we consider
$\langle f, g\rangle_{H^{m}}=\sum_{l=0}^{m} \lambda_{l} \int_{S G} \Delta^{l} f \Delta^{l} g d \mu+\sum_{l=0}^{m-1} \beta_{l} \varepsilon\left(\Delta^{l} f, \Delta^{l} g\right)+$
$\sum_{l=0}^{m-1}\left[\Delta^{l} f\left(q_{0}\right) \Delta^{l} f\left(q_{1}\right) \Delta^{l} f\left(q_{2}\right)\right] M_{l}\left[\Delta^{l} g\left(q_{0}\right) \Delta^{l} g\left(q_{1}\right) \Delta^{l} g\left(q_{2}\right)\right]^{T}$, where M_{l} are positive definite 3×3 matrices.

Recurrence: Generalization ($\mathrm{k}=2$ or 3)

Asymptotic: we consider the case $\lambda_{m} \rightarrow \infty$, and the other parameters are bounded.
Theorem: Suppose $k=2$ or 3 , and there exists $M>0$ such that $\lambda_{l} \leq M$ for any $l<m$. Then for any $n \geq 2 m+1$, we have

$$
\left\|S_{n}-\mathcal{F}_{n}\right\|_{L^{2}} \leq C(n, M, m, \mu) \lambda_{m}^{-1}
$$

Consequently, $\lim _{\lambda_{m} \rightarrow \infty}\left\|\Delta^{i} S_{n}-\mathcal{G}^{m-i} p_{n-m}\right\|_{L^{\infty}} \rightarrow 0$ for any $0 \leq i \leq m$.

Zeros: Continuous functions

Theorem (Topological result): Let f be a continuous function defined on $S G$. Suppose f has finitely many zeros. Let Z_{0} be the intersection of zero set Z of f and V^{*}. Then for any connected component D in $S G \backslash Z_{0}$, either $f \geq 0$ on D or $f \leq 0$ on D.

Zeros: Entire Analytic functions

Theorem: Suppose
$f(x)=\sum_{j=t_{1}}^{\infty} c_{j 1} P_{j 1}^{(0)}(x)+\sum_{j=t_{2}}^{\infty} c_{j 2} P_{j 2}^{(0)}(x)+\sum_{j=t_{3}}^{\infty} c_{j 3} P_{j 3}^{(0)}(x)$ where $c_{t_{1}, 1}$, $c_{t_{2}, 2}$ and $c_{t_{3}, 3}$ are nonzero and has zero set Z. Then
$1 Z$ is compact and nowhere dense in $S G$.

Zeros: Entire Analytic functions

Theorem: Suppose
$f(x)=\sum_{j=t_{1}}^{\infty} c_{j 1} P_{j 1}^{(0)}(x)+\sum_{j=t_{2}}^{\infty} c_{j 2} P_{j 2}^{(0)}(x)+\sum_{j=t_{3}}^{\infty} c_{j 3} P_{j 3}^{(0)}(x)$ where $c_{t_{1}, 1}$, $c_{t_{2}, 2}$ and $c_{t_{3}, 3}$ are nonzero and has zero set Z. Then
$1 Z$ is compact and nowhere dense in $S G$.
2 If $t_{3}<t_{1}-1$ and $t_{3}<t_{2}$, then f has infinitely many zeros that has limit point q_{0}. Moreover, suppose the conjecture $P_{j 1}>0$ is true, $t_{1} \leq t_{2}$ and $t_{1} \leq t_{3}$. Then q_{0} has a neighborhood U such that $Z \cap U \subset\left\{q_{0}\right\}$.

Zeros of OPs

How many zeros do the Orthogonal Polynomials have?

S_{2}

Figure: Antisymmetric Sobolev OP of Degree 2

Counting Zeros

Figure: Edge Zeros of Orthogonal Polynomials

Notice that some polynomials have more than $3 n+3$ zeros...

Polynomial Interpolation and Quadrature on SG

Questions:

■ Can we use polynomials (orthogonal or otherwise) to accurately interpolate functions?

- Can we obtain an analog of Gauss-Legendre quadrature on SG?
- Can we develop an algorithm for polynomial quadrature on SG and determine error estimates for it?

Interpolation

■ Polynomials of degree n can have more than $3 n+3$ zeros on SG.

- We need to establish the invertibility of

$$
M_{n}=\left[\begin{array}{cccc}
P_{1}\left(x_{1}\right) & P_{1}\left(x_{2}\right) & \ldots & P_{1}\left(x_{3 n+3}\right) \\
\vdots & \vdots & \ddots & \vdots \\
P_{3 n+3}\left(x_{1}\right) & P_{3 n+3}\left(x_{2}\right) & \ldots & P_{3 n+3}\left(x_{3 n+3}\right)
\end{array}\right]
$$

Interpolation

If we choose a rotationally symmetric set of points, the interpolation matrix M_{n} becomes circulant-block. This enables us to prove the invertibility of M_{2}.

Figure: Interpolation Set for $n=3$

Interpolation

n	$\left\|M_{n}\right\|$
1	$-1.744 \mathrm{e}-06$
2	$1.066 \mathrm{e}-19$
3	$-4.200 \mathrm{e}-41$
4	$-2.058 \mathrm{e}-69$
5	$6.788 \mathrm{e}-110$
6	$-1.347 \mathrm{e}-163$
7	$5.044 \mathrm{e}-232$
8	$-4.976 \mathrm{e}-316$

Table: Determinants of M_{n}

Interpolation

■ The interpolation matrix for the $P_{j k}$ polynomials on V_{1} points is invertible (by computation)

- By choosing $n+1$ points on the left side of V_{n} along with their rotations, the interpolation matrix becomes circulant-block. These matrices are computationally invertible up to at least $n=50$.

■ The general case is unknown.

Quadrature

■ Gauss-Legendre quadrature on \mathbb{R} requires the polynomial division algorithm on \mathbb{R}. However, we do not have this on SG.

- We have a pseudo-division algorthim on SG, but the quotient is a linear combination of powers of the Green's operator:

$$
\mathcal{Q}_{f}=\frac{1}{b_{m}} \sum_{i=0}^{n-m} c^{(i)} \mathcal{G}^{(n-m-i)}
$$

Quadrature

■ We can try to use n-Harmonic spline quadrature, but this comes back to the interpolation problem since we need to solve

$$
\left[\begin{array}{cccc}
P_{1}\left(x_{1}\right) & P_{1}\left(x_{2}\right) & \ldots & P_{1}\left(x_{3 n+3}\right) \\
\vdots & \vdots & \ddots & \vdots \\
P_{3 n+3}\left(x_{1}\right) & P_{3 n+3}\left(x_{2}\right) & \ldots & P_{3 n+3}\left(x_{3 n+3}\right)
\end{array}\right]\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{3 n+3}
\end{array}\right]=\left[\begin{array}{c}
\int_{S G} P_{01} \\
\vdots \\
\int_{S G} P_{n 3}
\end{array}\right]
$$

N-Harmonic Extension: The Solution to Many Polynomial Problems on SG

■ Is there an algorithm to extend a function defined on $3 n+3$ vertices of V_{n} n-Harmonically?

- Given this algorithm, we have the following quadrature error estimate:

$$
\left|I_{n}^{m}(f)-\int_{S G} f\right| \leq c_{1} 5^{-(n+1)(m-n)}\left\|\Delta^{(n+1)} f\right\|_{\infty}
$$

Outstanding Questions Regarding Polynomials on SG

1 Is $\partial_{n} f_{n} \neq 0 \forall n$?
2 Is $P_{j 1}>0$ except at q_{0} ?
3 Interpolation problem: Does sampling an n degree polynomial on any $3 n+3$ points uniquely determine the polynomial?

Questions 2 and 3 can be solved given an n-Harmonic Extension Algorithm.

Extremal Points of Polynomials

Extremal Points of Polynomials

Definition of local extrema:
1 For a function u defined on SG and $x \in S G$, we say that x is a local maximum (minimum) of u if \exists neighborhood U s.t. $x \in U \subseteq S G$ and $\forall y \in U$, we have $u(x) \geq u(y)$ (or $u(x) \leq u(y)$).

2 For a function u defined on SG and $x=F_{w} q_{n}=F_{w^{\prime}} q_{n^{\prime}} \in S G$, we say that x is a local edge maximum (minimum) of u if $\exists M$ s.t. $\forall m \geq M, u(x) \geq u\left(F_{w} F_{n}^{m} q_{j}\right)$ for $j=n-1, n+1$ and $u(x) \geq u\left(F_{w^{\prime}} F_{n^{\prime}}^{m} q_{j^{\prime}}\right)$ for $j^{\prime}=n^{\prime}-1, n^{\prime}+1$. [u is larger than a discrete set of points on all neighboring edges]
\Rightarrow Local edge extrema are weaker than local extrema

Extremal Points of Polynomials - General Case

Theorem:

(Necessary conditions for x to be a local edge extrema of u)
1 If $x \in V_{0}$ is on the boundary, then $\partial_{n} u(x) \geq 0$ if x is a local maximum (or $\partial_{n} u(x) \leq 0$ for x a local minimum)

2 If x is not on the boundary, then $\partial_{n} u(x)=0$, and $\Delta u(x) \leq 0$ if x is a local maximum (or $\Delta u(x) \geq 0$ if x is a local maximum)

Corollary: $P_{11} \geq 0$

Extremal Points of Polynomials - General Case

Theorem:

(Sufficient conditions for x to be a local edge extrema of u)
1 Let $u \in \operatorname{dom} \Delta_{\mu}$ and $x=F_{w} q_{n}=F_{w^{\prime}} q_{n^{\prime}}$ be a junction point

$$
\text { satisfying }\left\{\begin{array}{l}
\Delta u(x)<0(\text { or } \Delta u(x)>0) \\
\partial_{n} u\left(F_{w} q_{n}\right)=\partial_{n} u\left(F_{w^{\prime}} q_{n^{\prime}}\right)=0 \\
\partial_{T} u\left(F_{w} q_{n}\right)=\partial_{T} u\left(F_{w^{\prime}} q_{n^{\prime}}\right)=0
\end{array}\right.
$$

Then t is a local edge maximum (or minimum) of u on SG.
\Rightarrow This only holds for local edge maximum, not local maximum.
(Normal derivatives and tangential derivatives are very weak characterizations of local behavior)

Extremal Points of Polynomials - Harmonic Case

Lemma: (Behavior of Harmonic Function on Outmost Edges) Let h be a harmonic function on SG, and we consider the edge between $q_{0}, q_{1} \in V_{0}$, assuming $h\left(q_{0}\right) \leq h\left(q_{1}\right)$.

1 If $\partial_{n} h\left(q_{0}\right) \cdot \partial_{n} h\left(q_{1}\right) \leq 0$, then h is increasing from q_{0} to q_{1}.
2 If $\partial_{n} h\left(q_{0}\right), \partial_{n} h\left(q_{1}\right)>0$, then h first decrease then increase from q_{0} to q_{1}.
3 If $\partial_{n} h\left(q_{0}\right), \partial_{n} h\left(q_{1}\right)<0$, then h first increase then decrease from q_{0} to q_{1}.
\Rightarrow Behavior of harmonic functions on edges is completely characterized by sign of normal derivatives on V_{0}.

Extremal Points of Polynomials - Harmonic Case

Theorem: (Local Extrema of Harmonic Functions)
Let h be a non-constant harmonic function: $h\left(q_{0}\right)=\alpha, h\left(q_{1}\right)=\beta$, $h\left(q_{2}\right)=\gamma$ with $\alpha \leq \beta \leq \gamma$ not all equal.

1 If $\partial_{n} h\left(q_{1}\right)=0$, then q_{0} is the unique local minimum and q_{2} is the unique local maximum.
2 If $\partial_{n} h\left(q_{1}\right)<0$, then q_{0}, q_{1} are the only local minima and q_{2} is the unique local maximum.
3 If $\partial_{n} h\left(q_{1}\right)>0$, then q_{0} is the unique local minimum and q_{1}, q_{2} are the only local maxima.

Extremal Points of Polynomials - Biharmonic Case

Theorem:

(Necessary conditions for local extrema of biharmonic functions)
Let $u \in \mathcal{H}^{1}$ be a nonconstant biharmonic function on SG , and $x=F_{w} q_{n}=F_{w^{\prime}} q_{n^{\prime}}$ be a junction point that is a local extrema of u. Then we have:
$1 \partial_{n} u(x)=0$.
2 Either $\Delta u(x) \neq 0$ or $\partial_{n} \Delta u(x) \neq 0$.
\Rightarrow Proof: From the properties of antisymmetric functions.

Extremal Points of Polynomials - Biharmonic Case

Theorem:

(Sufficient conditions for local extrema of biharmonic functions)
Let $u \in \mathcal{H}^{1}$ be a function on $S G$, and $x=F_{w} q_{n}=F_{w^{\prime}} q_{n^{\prime}}$ be a junction
point. Suppose $\left\{\begin{array}{l}\partial_{n} u(x)=0 \\ \partial_{T} u(x)=0 \\ \partial_{n} \Delta u(x)=0 \\ \partial_{T} \Delta u(x)=0\end{array}\right.$, then x is a local optimum of u.
\Rightarrow This comes from the property that P_{11} achieves global maximum/minimum on the boundary.

Extremal Points of Polynomials - Summary and Questions

Recap:

1 Define local extrema and local edge extrema
2 Local edge extrema + functions in the domain of Laplacian
3 Local extrema + harmonic/biharmonic functions

Questions to consider:

1 Can any of the above be generalized to n-harmonic functions?
2 Is it possible to design an efficient algorithm to find local extrema of n-harmonic functions, given that we can evaluate the n-jet at all points?

Chebyshev Polynomials on SG

Chebyshev Polynomials on SG

Definition of Chebyshev Polynomials on $[-1,1]$:
The $n^{\text {th }}$ Chebyshev polynomial $T_{n}(x):[-1,1] \rightarrow \mathbb{R}$ is defined as $T_{n}(x):=\cos \left(n \cos ^{-1}(x)\right)$

Chebyshev Polynomials on SG

Definition of Chebyshev Polynomials on $[-1,1]$:
The $n^{\text {th }}$ Chebyshev polynomial $T_{n}(x):[-1,1] \rightarrow \mathbb{R}$ is defined as $T_{n}(x):=\cos \left(n \cos ^{-1}(x)\right)$

An important property of Chebyshev Polynomials on $[-1,1]$ is the extremal principle:
$\forall P(x):[-1,1] \rightarrow \mathbb{R}$, monic polynomial of degree n, $\left\|2^{1-n} T_{n}(x)\right\|_{u} \leq\|P(x)\|_{u}$, where $\|\cdot\|_{u}$ is the uniform norm of functions.

Chebyshev Polynomials on SG

Definition of Chebyshev Polynomials on $[-1,1]$:
The $n^{\text {th }}$ Chebyshev polynomial $T_{n}(x):[-1,1] \rightarrow \mathbb{R}$ is defined as $T_{n}(x):=\cos \left(n \cos ^{-1}(x)\right)$

An important property of Chebyshev Polynomials on $[-1,1]$ is the extremal principle:
$\forall P(x):[-1,1] \rightarrow \mathbb{R}$, monic polynomial of degree n, $\left\|2^{1-n} T_{n}(x)\right\|_{u} \leq\|P(x)\|_{u}$, where $\|\cdot\|_{u}$ is the uniform norm of functions.

Remark: the leading coefficient of $T_{n}(x)$ is 2^{1-n}, and hence $2^{1-n} T_{n}(x)$ is the monic polynomial on $[-1,1]$ that minimizes the uniform norm.

Chebyshev Polynomials on SG

Chebyshev Polynomials on SG

The revised definition of Chebyshev Polynomials on any compact $K \subseteq \mathbb{R}$:
The $n^{\text {th }}$ Chebyshev polynomial $T_{n}(x): K \rightarrow \mathbb{R}$ is defined as the monic polynomial of degree n that has the smallest uniform norm of all monic polynomial of degree n.

Chebyshev Polynomials on SG

The revised definition of Chebyshev Polynomials on any compact $K \subseteq \mathbb{R}$:
The $n^{\text {th }}$ Chebyshev polynomial $T_{n}(x): K \rightarrow \mathbb{R}$ is defined as the monic polynomial of degree n that has the smallest uniform norm of all monic polynomial of degree n.

Fix k, then the monic polynomial of degree j is a polynomial of the form $\sum_{l=0}^{j} c_{l} P_{l k}$, where $c_{j}=1$.

Chebyshev Polynomials on SG

The revised definition of Chebyshev Polynomials on any compact $K \subseteq \mathbb{R}$:
The $n^{\text {th }}$ Chebyshev polynomial $T_{n}(x): K \rightarrow \mathbb{R}$ is defined as the monic polynomial of degree n that has the smallest uniform norm of all monic polynomial of degree n.

Fix k, then the monic polynomial of degree j is a polynomial of the form $\sum_{l=0}^{j} c_{l} P_{l k}$, where $c_{j}=1$.

Definition of the $j^{\text {th }}$ Chebyshev Polynomials of family k on SG: Fix $k=1,2,3$, then the $j^{\text {th }}$ Chebyshev Polynomials of family k, $T_{j k}(x)$, is the monic polynomial of degree j, such that $\forall P(x)$ a monic polynomial of degree $j,\left\|T_{j k}\right\|_{u} \leq\|P\|_{u}$

Partial Results on \mathcal{H}_{1}

Partial Results on \mathcal{H}_{1}

The problem right now reduces to for fixed k, find a_{k}, such that $P_{1 k}(x)+a_{k} P_{0 k}(x)$ has the smallest uniform norm of all monic polynomial of degree 1 .

- For the 1-family, we have an exact answer, that $T_{11}(x)=P_{11}(x)-\frac{1}{12} P_{01}(x)$
- This is because $P_{11} \geq 0$ and hence it achieves the minimum value 0 at q_{0} and the maximum value $\frac{1}{6}$ at q_{1} and q_{2}.
- Unfortunately, the proof that $P_{11} \geq 0$ is overcomplicated and cannot be generalized to arbitrary j.

Image of $T_{11}(x)$

Figure: Plot of Chebyshev polynomial of order 1 of family 1, with $a=-\frac{1}{12}$. The boundary node on the left is q_{1}, the one on the right is q_{2}, and the boundary node on the back is q_{0}.

Partial Results on \mathcal{H}_{1}

- For the $2^{\text {nd }}$ Chebyshev polynomials of family 2 and the family 3 , we only have experimental result, and our experiments show that $a_{2}=0.0619339$ and $a_{3}=0.0275013$
- We found those values by firstly determining loose bounds of a_{2} and a_{3}, which are $\left[-\frac{2 \beta_{1}}{\beta_{0}}, 0\right]=\left[-\frac{8}{45}, 0\right]$ for a_{2} and $\left[-\frac{2 \alpha_{1}}{\alpha_{0}}, 0\right]=\left[-\frac{1}{15}, 0\right]$ for a_{3}.
- Then we partition the intervals, test out each a_{k}, and look for the a_{k} that gives the smallest uniform norm.

Image of $T_{12}(x)$

Figure: Plot of Chebyshev polynomial of order 1 of family 2, with $a \approx-0.0619339$. The boundary node on the left is q_{1}, the one on the right is q_{2}, and the hidden boundary node on the back is q_{0}.

Image of $T_{13}(x)$

Figure: Plot of Chebyshev polynomial of order 1 of family 3, with $a \approx-0.02750235$. The boundary node on the left is q_{1}, the one on the right is q_{2}, and the hidden boundary node on the back is q_{0}.

Alternating Property of Chebyshev Polynomials

■ A degree n polynomial $P_{n}(x)$ defined on a compact set $K \subseteq \mathbb{R}$, has an alternating set, if $\exists\left\{x_{j}\right\}_{j=0}^{n}$ with $x_{0}<x_{1}<\ldots<x_{n}$, so that $P_{n}\left(x_{j}\right)=(-1)^{n-j}\left\|P_{n}(x)\right\|_{u}$.

- The Alternation Theorem: A monic polynomial of degree n is the Chebyshev polynomial if and only if it has an alternating set.
■ The experimental results also show that the absolute value of the minimum and the maximum of the monic polynomials become closer when a_{2} and a_{3} approach the values that minimize their uniform norms.

Alternating Property of Chebyshev Polynomials

- Assume that there exist an a, such that $Q(x):=P_{13}(x)+a P_{03}(x)$ achieves maximum norm at two distinct points $y \in \bigcup_{m=0}^{\infty} F_{0}^{m} F_{1} S G$ and $z \in \bigcup_{m=0}^{\infty} F_{0}^{m} F_{1} S G$, and $z=-y$. Then $Q(x)$ is the $1^{s t}$ Chebyshev polynomial of the 3 -family.
- Assume $Q(x)$ is not the first Chebyshev polynomial of the 3-family. Then $\left\|T_{13}\right\|_{\infty}<\|Q\|_{\infty}$. This implies that $\left|T_{13}(x)\right|<|Q(x)|$ at y and z. Thus $T_{13}-Q(x)$ cannot be both positive or negative at y and z. Since both $T_{13}(x)$ and $Q(x)$ are monic, $T_{13}-Q(x)$ is spanned by P_{03}, and hence $T_{13}-Q(x)$ has to be both positive or negative at y and z. We have a contradiction.

Further Questions

- Find explicit formulas for Chebyshev polynomials of any degree.
- Replicate the alternation theorem to polynomials on SG.

■ Study the orthogonality.

- Find the recurrence relation, if any.

References

[1] In: (). URL: https://github.com/s769/op_on_sg.
[2] Francisco Marcellan and Yuan Xu. "On Sobolev orthogonal polynomials". In: Expositiones Mathematicae 33.3 (2015), pp. 308-352. ISSN: 0723-0869. DoI: https ://doi .org/ 10.1016/j.exmath.2014.10.002. URL: http://www.sciencedirect.com/science/ article/pii/S0723086914000541.
[3] Jonathan Needleman et al. "Calculus on the Sierpinski gasket I: polynomials, exponentials and power series". In: Journal of Functional Analysis 215.2 (2004), pp. 290340. ISSN: 0022-1236. DOI: https://doi.org/10.1016/j.jfa.2003.11.011. URL: http://www.sciencedirect.com/science/article/pii/S002212360300421X.
[4] Kasso A. Okoudjou, Robert S. Strichartz, and Elizabeth K. Tuley. "Orthogonal Polynomials on the Sierpinski Gasket". In: Constructive Approximation 37.3 (June 2013), pp. 311-340. ISSN: 1432-0940. DOI: 10.1007/s00365-013-9187-1. URL: https://doi. org/10.1007/s00365-013-9187-1.
[5] Robert S. Strichartz. Differential Equations on Fractals: A Tutorial. Princeton University Press, 2006. URL: http://www. jstor. org/stable/j.ctv346nvv.

Questions?

Scalarproduct in $L^{2}[a, b]$ exists

Functionalanalysis :

WECOTESTH

