
The Classification Problem for 3-Manifolds

1. Canonical decomposition into simpler pieces. 

Program from ca. 1980:

2. Explicit classification of special types of pieces.

3. Generic pieces are hyperbolic manifolds.

Will focus on the more topological aspects, 1 and 2.

Diff = PL = Top  in dimension 3

Convention:  manifolds are connected, orientable, and compact, 
possibly with boundary. "Closed" = "compact, no boundary".

For M a closed orientable 3-manifold, ¹1(M) determines all the 
homology groups Hi(M):

H1(M) = abelianization of  ¹1(M) 

H2(M) = H1(M) = H1(M)/torsion

H3(M) = Z

Hi(M) = 0  for  i > 3

Question:  Does ¹1(M) determine  M  up to homeomorphism?

Weaker question:  Does ¹1(M) determine  M  up to homotopy 
equivalence?

Poincaré Conjecture:  ¹1(M) = 0  ⇒  M = S3.
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¹1(M) = 0  ⇒  M ' S3 :  

H1(M) = 0

¹2(M) = H2(M) = 0

¹3(M) = H3(M) = Z

gen by  f : S3 → M,  iso on  ¹3 = H3         
  ⇒ iso on Hn for all  n            
  ⇒ homotopy equivalence (Whitehead's Thm)

Prime Decomposition

Connected sum  P # Q:  Delete interiors of closed balls in  P  
and  Q,  then identify the two resulting boundary spheres.

Two essentially different ways to identify, depending on 
orientations. For oriented manifolds  #  is unique.

P # Q = Q # P.   Also associative.

M # S3 = M.  

M is prime if  M = P # Q  ⇒  P = S3  or  Q = S3.

Alexander's Theorem (1924).  S3  is prime:  every (smooth)  
S2  in  S3  bounds a ball on each side.

Kneser's Theorem (1930).  M compact, oriented  ⇒  M  has a  

decomposition into primes,  M = P1 # ... # Pn,  and this is 
unique up to insertion or deletion of  S3  summands. 

So no counterexamples to the Poincaré conjecture in  S3,  
since  ¹1(P # Q) = ¹1(P) * ¹1(Q)  by van Kampen. 
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Consequence:  Choose prime manifolds  P  and  Q  neither of 
which has an orientation-reversing self-diffeomorphism. 
(There are lots of these.)  Then the two ways of forming  
P # Q  produce nonhomeomorphic manifolds having 
isomorphic  ¹1's.

Revised question:  Does ¹1(M) determine  M  up to 
homeomorphism if  M  is prime (and closed)?

Rough classification of prime closed orientable 3-manifolds 
according to the size of  ¹1:

Type I:  ¹1(M)  finite.

Universal cover  M  is closed, simply-connected, hence  M ' S3. 

Only known examples are spherical manifolds  S3/Γ  for  Γ a 
finite subgroup of SO(4) acting freely on  S3  by rotations.

∼ ∼

These were explicitly classified in the 1930s, using the two-
sheeted covering  SO(4) → SO(3) × SO(3)  to describe the 
finite subgroups of  SO(4) in terms of the finite subgroups of  
SO(3). 

The spherical manifolds with  ¹1(M) = Γ  cyclic are the
 lens spaces  Lp/q   for 0 < p/q < 1.  

            Lp/q = Lp'/q  ⇐⇒  p' ≡ ±p±1 mod  q

¹1(Lp/q) = Zq  but:

so there can be many different lens spaces with the same  ¹1, 
e.g. at least  (q-1)/4  if  q  is prime.



Taking orientations into account: 

            Lp/q = Lp'/q  ⇐⇒  p' ≡ p±1  mod  q
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Hence many lens spaces have no orientation-reversing 
homeomorphism, e.g.  L1/3 .

Spherical  S3/Γ  with  Γ  noncyclic:  Several infinite families. 
All are uniquely determined by  ¹1.

Famous example:  Poincaré homology sphere  S3/Γ = SO(3)/I  
for  I  the icosahedral group, of order 60, so  | Γ | = 120. 

Type II:  ¹1(M)  infinite cyclic.

Only one such manifold that is closed and orientable:  S1 × S2.  

Proof:  If  M  is prime but not irreducible, it contains an  S2 
that is nonseparating:  there is an  S1  in  M  intersecting the  
S2  in one point transversely.  A neighborhood  N  of  S1 ∪ S2  
is  S2 × I  with a 1-handle connecting its two boundary 
spheres.  So  N = (S1 × S2)  -  B3,  hence  M = S1 × S2 # P  for 
some  P.  Then  M  prime implies  M = S1 × S2.

Special properties of  S1 × S2:

1.  It is the only prime orientable manifold that is not irreducible. 
(A manifold  M  is irreducible if every embedded  S2  in  M  bounds 
a ball in  M.)

2.  S1 × S2  is the only prime closed orientable manifold with  ¹2  
nonzero.

This is an immediate consequence of the Sphere Theorem: 
In an orientable 3-manifold  M,  if  ¹2(M)  is nonzero then 
there is an embedded sphere in  M  that represents a 
nontrivial element of  ¹2(M).



Type III:  ¹1(M)  infinite but not cyclic.
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Fact:  An irreducible  M  with  ¹1(M)  infinite is a  K(¹,1),  i.e., 
the universal cover  M  is contractible. ∼

∼

∼
∼ ∼

∼ ∼Proof:  M  is simply-connected and has trivial homology groups:  
H2(M) = ¹2(M) = ¹2(M),  and this is  0  by the Sphere Theorem 
and irreducibility.  Since  M  is a noncompact 3-manifold we have  
Hn(M) = 0  for  n > 2.  Whitehead's theorem then implies that  M  
is contractible. 

Thus if  M  is a closed manifold of Type III,  ¹1(M)  determines 
the homotopy type of  M.

Some consequences:

1.  ¹1(M)  is torsionfree.  Proof:  If not, the covering space of  M  
corresponding to a nontrivial finite cyclic subgroup  Zn ⊂ ¹1(M)  
would be a finite-dimensional  K(Zn,1)  CW complex, which 
cannot exist since infinite-dimensional lens spaces are  K(Zn,1)'s  
and these have nontrivial homology in infinitely many 
dimensions.

2.  If  ¹1(M)  is a free abelian group  Zn  and  M  is a closed  
K(¹,1)  then  n = 3.  (Example:  the 3-torus  T3.)  
Proof:  The n-torus  Tn  is a  K(Zn,1)  with  Hn(Tn) = Z  and  
Hi(T

n) = 0  for  i > n,  hence  ¹1(M) = Zn  ⇒  M ' Tn  ⇒  n = 3.

In particular,  Z  cannot be the fundamental group of a closed 
manifold of Type III, which shows that  S1 × S2  is the only 
prime closed orientable 3-manifold with  ¹1  infinite cyclic.

Borel Conjecture:  A closed n-manifold  K(¹,1)  is determined 
up to homeomorphism by its fundamental group.

No counterexamples known in any dimension.

Hence  M  is irreducible.
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Waldhausen proved the conjecture for Haken 3-manifolds:  
irreducible  M  containing an embedded compact orientable 
surface  S  (not  S2)  with  ¹1(S) → ¹1(M)  injective.  (If  ∂S  is 
nonempty, assume  S  is properly embedded:  S ∩ ∂M = ∂S.)  
Such a surface  S  is called incompressible. 

A Haken manifold can be split successively along a finite sequence 
of incompressible surfaces until all that remains are balls. Then 
one can do proofs by induction through the splittings. This 
works for Waldhausen's theorem (in a suitable relative form).

Some Haken manifolds:

1.  Products  F × S1  with  F  a compact orientable surface, not  S2.

2.  More generally, fiber bundles over  S1  with fiber a compact 
orientable surface other than  S2.

3.  More generally still, irreducible  M  with  H1(M)  infinite. 
(H1(M)  is infinite if  M  is not closed and some component of  
∂M  has genus > 0.)

Are most Type III manifolds Haken?  The known non-Haken 
manifolds of Type III all seem to be "small". Perhaps all 
"sufficiently large" irreducible 3-manifolds are Haken.  

Conjecture:  Every Type III manifold has a finite-sheeted cover 
that is Haken.



Seifert Manifolds
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A special family of manifolds explicitly classified in the 1930s. 

A Seifert fibering:  Like an ordinary fiber bundle with circle 
fibers, but allow a finite number of exceptional circle fibers 
where the local model is:

Start with  D2 × I  with the product fibering 
by intervals. Then glue the two ends 
together via a 2¹p/q  rotation of the disk.
The central interval fiber becomes a circle 
fiber, but the other circle fibers are formed 
from  q  interval fibers.

Compact orientable manifolds that have a Seifert fibering are 
Seifert manifolds. These can have nonempty boundary 
consisting of tori, with product fiberings by circles. 

Seifert fiber structures on a compact oriented manifold are 
classified by:
1.  The topological type of the base surface.

2.  The twists  p/q  (mod 1)  at the exceptional fibers. 

3.  A rational "Euler number", in the case of Seifert fiberings 
of a closed manifold. This is the obstruction to a section.

In most cases the Seifert fibering of a Seifert manifold is 
unique up to isotopy. The exceptional cases can be listed 
explicitly, so one obtains an explicit classification of all Seifert 
manifolds. 

It's easy to read off which ones have orientation-reversing 
homeomorphisms. (These just change the signs of the  p/q's  
and the Euler number.)

Identifying each circle fiber to a point gives the base space, a 
compact surface which can be nonorientable.
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A happy accident:  All spherical 3-manifolds are Seifert manifolds, 
with base  S2  and at most 3 exceptional fibers.

The Type II manifold  S1 × S2  is also clearly a Seifert manifold.

M  irreducible  ⇐⇒  M  can't be simplified by splitting along 
spheres. 

The remaining Seifert manifolds are all of Type III, with the sole 
exception of  RP3 # RP3  which is not prime. This has  S1 × S2  as 
a 2-sheeted cover, and is the only nonprime manifold covered by 
a prime manifold.

Torus Decomposition

Fact:  In an irreducible  M  these are the only compressible tori.
Follows from the Loop Theorem:  If  ¹1(∂M) → ¹1(M)  is not 
injective then there is a properly embedded disk  D ⊂ M  with  ∂D  
representing a nontrivial element of the kernel of  ¹1(∂M) → ¹1(M).

So try splitting along incompressible tori.

Torus Decomposition Theorem (Jaco-Shalen, Johannson):  
If  M  is an irreducible compact orientable 3-manifold, then there 
is a finite collection of disjoint incompressible tori  T1 , ... , Tn  in  
M  such that splitting  M  along the union of these tori produces 
manifolds  Mi  that are either Seifert-fibered or atoroidal (every 
incompressible torus in  Mi  is isotopic to a torus component of  
∂Mi).  Furthermore, a minimal such collection of tori  Tj  is unique 
up to isotopy.

The collection of tori could be empty. This happens if  M  is itself 
either Seifert-fibered or atoroidal.

Try splitting along tori.  Which tori?  
"Trivial" tori:  bound a solid torus  S1 × D2  or lie in a ball.  
Splitting along these doesn't simplify the manifold.

These trivial tori are obviously compressible.
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If the collection of tori  Tj  is not empty, the manifolds  Mi  will 
have boundary tori coming from the  Tj 's.  There is no canonical 
way to fill these in with solid tori, so just leave the boundary tori 
unfilled.  Thus the classification problem for closed manifolds 
inevitably leads to classifying manifolds with boundary tori. 

M  determines the  Mi's  uniquely, but not conversely.  There is 
an  SL2(Z) of choices for how to glue back together on each  Tj.  
To classify the possible  M's  obtainable from given  Mi's,  need to 
know which homeomorphisms of  ∂Mi  extend to 
homeomorphisms of  Mi.

This is known for Seifert-fibered  Mi's.  Hence can classify graph 
manifolds, where all  Mi's  are Seifert manifolds. (Waldhausen)

Remaining BIG problem:  Classify irreducible manifolds that 
are atoroidal and not Seifert-fibered.

There are lots of these.  For example, knot complements in  
S3  are irreducible, and of the first million knots perhaps 99 
percent are atoroidal and not Seifert-fibered.

Also most surface bundles.

Can construct many more examples via Dehn surgery: 
Given a link  L ⊂ M,  the union of disjoint embedded circles 
L1 , ... , Ln  with disjoint solid torus neighborhoods  N(Li),  
first delete the interior of each  N(Li)  and then glue  N(Li)  
back in via a homeomorphism  ∂N(Li) → ∂(M - int(N(Li))).  
The resulting manifold only depends on how a meridian disk 
of  N(Li)  is glued in since glueing in the remaining ball is 
canonical.  The glueing of the meridian disk is specified by 
the image of its boundary circle, a curve in a torus, 
determined by a slope  pi/qi  in  Q ∪ {1/0}.  Get a family of 
manifolds  ML(p1/q1 , ... , pn/qn)  parametrized by points in 
a rational n-torus  (Q ∪ {1/0})n. 



Geometric examples:  Hyperbolic manifolds  H3/Γ  of finite 
volume are irreducible, atoroidal, and not Seifert-fibered.  

The converse is the Hyperbolization Conjecture.
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For a given  M,  most links  L  have  M - L  irreducible, atoroidal, 
non-Seifert. Then  ML(p1/q1 , ... , pn/qn)  is usually irreducible, 
atoroidal, and non-Seifert as well:  namely for all n-tuples  
(p1/q1 , ... , pn/qn)  in an open dense set in the rational n-torus.

For further reading:

A Hatcher,  Basic Topology of 3-Manifolds,   Notes available at

J Hempel,  3-Manifolds  (1976)

W Thurston,  Three-Dimensional Geometry and Topology  (1997)

http://www.math.cornell.edu/~hatcher


