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(Seifert–van Kampen Theorem)π1(K) = Γ

a finite presentation of a group ΓP = 〈a1, . . . , am | r1, . . . , rn〉

The presentation 2-complex of      :P

K̃The universal cover      is the Cayley 2-complex of     .P

K̃(1)Its 1-skeleton           is the Cayley graph of     .P
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ρ

Area(ρ)              is the infimum of the areas 
of discs spanning    . ρ

Xa loop in a simply connected space

       is defined by 

AreaX(l) = sup{Area(ρ) | "(ρ) ≤ l}.

AreaX : [0,∞)→ [0,∞]
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A van Kampen 
diagram ∆

2-cellsArea(∆) = #

Area(ρ)
For an edge-loop    in the Cayley 2-complex of a finite presentation    ,
              is the minimum of                 over all van Kampen diagrams 
spanning    . 
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The Filling Theorem.  If      is a finite presentation of the 
fundamental group of a closed Riemannian manifold      then 

P
M

.AreaP ! AreafM

The Dehn function                             of a finite presentation

    with Cayley 2-complex     is   P
AreaP : N→ N

edge-loops     in     with                  .

K̃

AreaP(n) = max{Area(ρ) | ρ K̃ "(ρ) ≤ n}



Z3 〈a, b, c | [a, b], [b, c], [c, a]〉
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ρ Xa loop in a simply connected space

Filling Length

    a (based) null-homotopy of 
through loops of lengthFL(ρ) = inf

{
L

∣∣∣∣
∃ ρ

≤ L

}

FLX(l) = sup{FL(ρ) | "(ρ) ≤ l}

FLX : [0,∞)→ [0,∞]The filling length function                                        is defined by

.



A combinatorial null-homotopy across a singular combinatorial 2-disc 



Theorem.  If      is a finite presentation of the fundamental group 
of a closed Riemannian manifold      then 

P
M

.FLP ! FLfM

The filling length              of a (singular) combinatorial 2-disc    
is the minimum     such that        can be combinatorially 
null-homotoped across     . 

∆
L ∂∆

∆

FL(∆)

For an edge-loop    in the Cayley 2-complex of a finite presentation    ,
            is the minimum of               over all van Kampen diagrams 
spanning    . 

Pρ

ρ
FL(ρ) FL(∆)

The filling length function                          of     is   P

edge-loops     in     with                  .

FLP : N→ N
FLP(n) = max{FL(ρ) | ρ K̃ "(ρ) ≤ n}



The Word Problem

a finite presentation of a group ΓP = 〈a1, . . . , am | r1, . . . , rn〉

M. Dehn:  Does there exist a systematic procedure (an algorithm) 
which on input a word    declares whether or not    represents    
in    ?  Γ

w w

Naïve attack: exhaustively apply relations to     in the hope of 
obtaining the empty word.  “The Dehn Proof System.” 

w
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〈a, b | [a, b]〉
Example
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Dehn function = (non-deterministic) TIME 

Filling length function = SPACE 

—of the Dehn Proof System 

Filling functions           algorithmic complexity measures          ←→

Mantra:

Theorem (Sapir–Birget–Rips).  If          is the time function of a 
non-deterministic Turing machine and       is super-additive, then 
there is a finite presentation for which                              .

f(n)
f4

Area(n) ! f4(n)



Other filling functions

The diameter of a singular combinatorial 2-disc     is the maximum 
distance between two of its vertices in the combinatorial metric 
on         .    

∆

∆(1)

The gallery length of      is the maximum distance between two 
vertices in the graph dual to         .  

∆
∆(1)

Define the (intrinsic) diameter                   and gallery length          
filling functions of a finite presentation as for               .   Area(n)

IDiam(n) GL(n)

What do these mean computationally?

The extrinsic diameter of a van Kampen diagram               is the 
maximum distance between two of its vertices in the combinatorial 
metric on         . 

∆ ⊂ K̃

K̃(1)

Thereby define the extrinsic diameter filling function                   .  EDiam(n)



The SPACE–TIME bound

Theorem.  Given a finite presentation,             ,       ,
 

∃C > 0 ∀n

Area(n) ≤ CFL(n)
.

Relationships between filling functions



where                       .
GL(n) ≤ 2C1

1 + 2 IDiam(n)
C1 = 1 + 2m

The Double Exponential Theorem

Theorem (D.E.Cohen).  Given a finite presentation,

∃C > 0 ∀n
Area(n) ≤ nCCIDiam(n)

,
,      ,             

.

P = 〈a1, . . . , am | r1, . . . , rs〉

Area(n) ≤ nC2
GL(n)

where                              .C2 = maxj !(rj)

Proof (Gersten, R.).



J.R. Stallings:  Given a finite presentation, does there always exist
           such that    C > 0

Area(n) ≤ CIDiam(n)
?

S. Gersten, R.:  Is

for every finite presentation?  
FL(n) ! GL(n)

∀n

M. Gromov:  Given a finite presentation, does there always exist
           such that  C > 0

FL(n) ≤ C IDiam(n) ?
∀n



Intrinsic versus extrinsic diameter

Is measuring diameter of van Kampen diagrams extrinsically 
qualitatively different to measuring it intrinsically?

∗
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Are there finite presentations for which                                     ?EDiam(n) ! IDiam(n)



Theorem (Bridson, R.). Yes!

For all            , there is a finite presentation with    α > 0
nα EDiam(n) ! IDiam(n).

Our family of groups:

amalgamated along an infinite cyclic subgroup     .      〈t〉
Ψk,m = Φk ∗〈t〉 Γm



Presentation of Γm

generators

relations

Presentation of

generators

relations

Φk

s1, . . . , sk, f, g ŝ1, . . . , ŝk, f̂ , ĝ b, t

t−1bsk = b3, sk
−1bt = b3, ŝk

−1bŝk = b3

∀i<k, f−1skf = sk, f−1sif = sisi+1, f̂−1ŝkf̂ = ŝk, f̂−1ŝif̂ = ŝiŝi+1

g−1skg = sk, g−1sk−1g = sk−1, ĝ−1ŝkĝ = ŝk, ĝ−1ŝk−1ĝ = ŝk−1

∀i<k−1, g−1sig = sisi+1, ĝ−1ŝiĝ = ŝiŝi+1

∀i #=j, [si, sj ] = 1, [ŝi, ŝj ] = 1

a1, . . . , am,σ, t, τ, T

σ−1amσ = am; ∀ i < m, σ−1aiσ = aiai+1

∀ j, [t, aj ] = 1, [t, T ], [τ, T ],
[τ, amt], ∀ i < m, [τ, ai]



boundary 
length     ∼ n

∼ nm

∼ nm/k

∼ nm



Dual trees in planar graphs 

Question (Gersten–R.).  Does there exist              such that for all 
finite planar connected graphs     , there is a spanning tree     in     with 

K > 0
G GT

Diam(T ) ≤ K Diam(G)

Diam(T ∗) ≤ K Diam(G∗) ?

and

G

TT ∗



Theorem (R., Thurston). No!

Proposition (Gersten, R.).  Suppose     is a combinatorial 2-disc in 
which every 2-cell has degree at most   .  If     is a spanning tree in
                 then 

∆
λ T

G = ∆(1)

.FL(∆) ≤ Diam(T ) + 2λDiam(T ∗) + "(∂∆)
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Any loop contracting across 
     will, at some time, meet 
          edges.n + 1
Tn



Tn

n

∆n

Gn = ∆n
(1)

Diam(Gn) ! Diam(Gn
∗) ! n

FL(∆n) ! n2

So for all spanning trees     in       , T Gn

Diam(T ) + 10Diam(T ∗) + 4 ! n2.

(cf. Frankel–Katz)



Application.  Finding a finitely presented group for which  

FL ! IDiam .FL ! GL

Candidate. The group generated by 

subject to

may have                                        and                    .     FL(n) ! n4GL(n) ! IDiam(n) " n3

and

. . .

. . .


