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P={(ai,...,Qm | T1,...,Tn) afinite presentation of a group T’

The presentation 2-complex of P :

o LCIAN

71 (K) = I (Seifert-van Kampen Theorem)

The universal cover K is the Cayley 2-complex of P.

Its |-skeleton K (1) is the Cayley graph of P.






p aloop in a simply connected space X L

Area(p)is the infimum of the areas
of discs spanning p.

Areax : [0,00) — |0, 00] is defined by
Areax (I) = sup{Area(p) | £(p) <1}



|

A van Kampen
diagram A

Area(A) = # 2-cells

For an edge-loop p in the Cayley 2-complex of a finite presentation P,
Area(p)is the minimum of Area(A) over all van Kampen diagrams

spanning p.



The Dehn function Areap : N — N of a finite presentation
P with Cayley 2-complex K is

Areap(n) = max{Area(p) |edge-loops p in Kwith £(p) < n}.

The Filling Theorem. If P is a finite presentation of the
fundamental group of a closed Riemannian manifold M then

Areap =~ Areasr.



(a,b,c| |a,bl, b, ], |c, al)




Filling Length

p aloop in a simply connected space X

7 a (based) null-homotopy of p }

FL(p) = inf {L through loops of length < T,

The filling length function FLx : [0, 00) — [0, 00] is defined by
FLx (1) = sup{FL(p) | £(p) < I}.






The filling length FL.(A) of a (singular) combinatorial 2-disc A
is the minimum L such that A can be combinatorially

null-homotoped across A.

For an edge-loop p in the Cayley 2-complex of a finite presentation P,
FL(p) is the minimum of FL(A) over all van Kampen diagrams

spanning p.
The filling length function FLp : N — N of Plis
FLp(n) = max{FL(p) |edge-loops p in Kwith £(p) < n}.

Theorem. If P is a finite presentation of the fundamental group
of a closed Riemannian manifold M then



The Word Problem

P ={ai,...,am | T1,-..,Tn) afinite presentation of a group I"

M. Dehn: Does there exist a systematic procedure (an algorithm)
which on input a word w declares whether or not w represents 1

in I'?

Naive attack: exhaustively apply relations to w in the hope of
obtaining the empty word. “The Dehn Proof System.”



11 = 1 =1l —
Example a a b b altatla platp?

(a0 | |a, b])




Dehn function = (non-deterministic) TIME

Filling length function = SPACE
—of the Dehn Proof System

Mantra:

Filling functions «—— algorithmic complexity measures

Theorem (Sapir—Birget—Rips). If f(n) is the time function of a
non-deterministic Turing machine and f4 is super-additive, then
there is a finite presentation for which Area(n) ~ f4 (n).



Other filling functions

The diameter of a singular combinatorial 2-disc A is the maximum
distance between two of its vertices in the combinatorial metric

on A,

The gallery length of A is the maximum distance between two
vertices in the graph dual to A1)

Define the (intrinsic) diameter IDiam (n) and gallery length GL(n)
filling functions of a finite presentation as for Area(n).

The extrinsic diameter of a van Kampen diagram A C K is the
maximum dj§ta1nce between two of its vertices in the combinatorial
metric on K1)

Thereby define the extrinsic diameter filling function EDiam(n).

What do these mean computationally?



Relationships between filling functions

The SPACE-TIME bound

Theorem. Given a finite presentation, 3C > 0, Vn,

Area(n) < cFL(n) .



The Double Exponential Theorem

Theorem (D.E.Cohen). Given a finite presentation,

P={(a1,...,0m |71,...,75),

4C >0 VYn .
’ ’ 1D
nCC 1am(n).

Area(n) <

Proof (Gersten, R)).

whereC7 = 1 4 2m. where Cy = max; {(r;).




J.R. Stallings: Given a finite presentation, does there always exist
C > 0 such that Vn

Area(n) < CIDiam(n) )

M. Gromoyv: Given a finite presentation, does there always exist
C' > 0 such that Vn
FL(n) < CIDiam(n) ?

S. Gersten, R.: Is
FL(n) ~ GL(n)

for every finite presentation!?



Intrinsic versus extrinsic diameter

Is measuring diameter of van Kampen diagrams extrinsically
qualitatively different to measuring it intrinsically?
AC

— |

[
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Are there finite presentations for which EDiam(n) #




Theorem (Bridson,R.). Yes!

For all o > 0, there is a finite presentation with

n® EDiam(n) =< IDiam(n).

Our family of groups:
\Ijk,m — (I)k *(t) IWTn

amalgamated along an infinite cyclic subgroup (t).



Presentation of 1',,,

generators ai,...,Qm,0,t, 7,1

relations 0 o = apm; Vi <m, 0" a0 = a;ai41
V7, [t aj] =1, [t T]v [TaT]a
T, amt], Vi <m, |T,a;]

Presentation of Py

generators
78k7f7g §17"'7§k7f7§ bat
relations
t_lbsk — bg, Sk_lbt — b3 S bSk =2
\V/7’<k7 f_lSkf — Sk, f ’Lf — SiSi+1, f_lgkf — Aka f_lgif
9 skg = Sk, 97 'Sk—19 = Sk—1, g = Sk
Vi<k—1, g 15,9 = si8i11, S
\V/’L#'], [827‘9]] — 17 [§’L> gl — 1



boundary
— length ~ n

N nm/k




Dual trees in planar graphs

Question (Gersten—R.). Does there exist K > 0 such that for all
finite planar connected graphs (5, there is a spanning tree ' in (G with

Diam(7T) < K Diam(G) and
Diam(7T™) < K Diam(G™) ?



Theorem (R, Thurston). No!

Proposition (Gersten, R.). Suppose A is a combinatorial 2-disc in
which every 2-cell has degree at most A. If I'is a spanning tree in

G = AW then
FL(A) < Diam(T) + 2ADiam(T™) 4 £(0A).






Any loop contracting across
7,, will, at some time, meet
n + 1 edges.




T,
T~
()
\__/ ]n
~_ >

G, =AW
Diam(G,,) ~ Diam(G,,”) ~ n (cf. Frankel-Katz)
FL(A,) = n?

So for all spanning trees T in G,

Diam(7T') + 10Diam(T™*) + 4 = n?



Application. Finding a finitely presented group for which
FL # IDiam and FL #GL.

Candidate. The group generated by

subject to

may have GL(n) ~ IDiam(n) < n® and FL(n) = n*.



