The geometry of discs spanning loops in groups and spaces

Tim Riley

Cornell Topology Festival

May 23, 2007
$\mathcal{P}=\left\langle a_{1}, \ldots, a_{m} \mid r_{1}, \ldots, r_{n}\right\rangle$ a finite presentation of a group Γ
The presentation 2-complex of \mathcal{P} :

$\pi_{1}(K)=\Gamma$ (Seifert-van Kampen Theorem)
The universal cover \widetilde{K} is the Cayley 2-complex of \mathcal{P}.
Its I-skeleton $\widetilde{K}^{(1)}$ is the Cayley graph of \mathcal{P}.

ρ a loop in a simply connected space X Area (ρ) is the infimum of the areas of discs spanning ρ.

Area $_{X}:[0, \infty) \rightarrow[0, \infty]$ is defined by

$$
\operatorname{Area}_{X}(l)=\sup \{\operatorname{Area}(\rho) \mid \ell(\rho) \leq l\}
$$

$\operatorname{Area}(\Delta)=\# 2$-cells
For an edge-loop ρ in the Cayley 2-complex of a finite presentation \mathcal{P}, Area (ρ) is the minimum of $\operatorname{Area}(\Delta)$ over all van Kampen diagrams spanning ρ.

The Dehn function Areap $: \mathbb{N} \rightarrow \mathbb{N}$ of a finite presentation \mathcal{P} with Cayley 2-complex \widetilde{K} is
$\operatorname{Area}_{\mathcal{P}}(n)=\max \{\operatorname{Area}(\rho) \mid$ edge-loops ρ in \widetilde{K} with $\ell(\rho) \leq n\}$.

The Filling Theorem. If \mathcal{P} is a finite presentation of the fundamental group of a closed Riemannian manifold M then

$$
\text { Area }_{\mathcal{P}} \simeq \text { Area }_{\widetilde{M}} .
$$

$$
\mathbb{Z}^{3} \quad\langle a, b, c \mid[a, b],[b, c],[c, a]\rangle
$$

Filling Length

ρ a loop in a simply connected space X

$\operatorname{FL}(\rho)=\inf \left\{L \left\lvert\, \begin{array}{l}\exists \text { a (based) null-homotopy of } \rho \\ \text { through loops of length } \leq L\end{array}\right.\right\}$
The filling length function $\mathrm{FL}_{X}:[0, \infty) \rightarrow[0, \infty]$ is defined by

$$
\mathrm{FL}_{X}(l)=\sup \{\mathrm{FL}(\rho) \mid \ell(\rho) \leq l\}
$$

A combinatorial null-homotopy across a singular combinatorial 2-disc

The filling length $\mathrm{FL}(\Delta)$ of a (singular) combinatorial 2-disc Δ is the minimum L such that $\partial \Delta$ can be combinatorially null-homotoped across Δ.

For an edge-loop ρ in the Cayley 2-complex of a finite presentation \mathcal{P}, $\mathrm{FL}(\rho)$ is the minimum of $\mathrm{FL}(\Delta)$ over all van Kampen diagrams spanning ρ.

The filling length function $\mathrm{FL}_{\mathcal{P}}: \mathbb{N} \rightarrow \mathbb{N}$ of \mathcal{P} is

$$
\mathrm{FL}_{\mathcal{P}}(n)=\max \{\mathrm{FL}(\rho) \mid \text { edge-loops } \rho \text { in } \widetilde{K} \text { with } \ell(\rho) \leq n\}
$$

Theorem. If \mathcal{P} is a finite presentation of the fundamental group of a closed Riemannian manifold M then

$$
\mathrm{FL}_{\mathcal{P}} \simeq \mathrm{FL}_{\widetilde{M}}
$$

The Word Problem

$$
\mathcal{P}=\left\langle a_{1}, \ldots, a_{m} \mid r_{1}, \ldots, r_{n}\right\rangle \text { a finite presentation of a group } \Gamma
$$

M. Dehn: Does there exist a systematic procedure (an algorithm) which on input a word w declares whether or not w represents 1 in Γ ?

Naïve attack: exhaustively apply relations to w in the hope of obtaining the empty word. "The Dehn Proof System."

Example
$\langle a, b \mid[a, b]\rangle$

| a |
| :--- |$| a$

Dehn function $=($ non-deterministic) TIME

Filling length function $=$ SPACE
—of the Dehn Proof System

Mantra:

Filling functions \longleftrightarrow algorithmic complexity measures

Theorem (Sapir-Birget-Rips). If $f(n)$ is the time function of a non-deterministic Turing machine and f^{4} is super-additive, then there is a finite presentation for which $\operatorname{Area}(n) \simeq f^{4}(n)$.

Other filling functions

The diameter of a singular combinatorial 2-disc Δ is the maximum distance between two of its vertices in the combinatorial metric on $\Delta^{(1)}$.

The gallery length of Δ is the maximum distance between two vertices in the graph dual to $\Delta^{(1)}$.

Define the (intrinsic) diameter $\operatorname{IDiam}(n)$ and gallery length $\mathrm{GL}(n)$ filling functions of a finite presentation as for Area (n).

The extrinsic diameter of a van Kampen diagram $\Delta \subset \widetilde{K}$ is the maximum distance between two of its vertices in the combinatorial metric on $\widetilde{K}^{(1)}$.

Thereby define the extrinsic diameter filling function $\operatorname{EDiam}(n)$.
What do these mean computationally?

Relationships between filling functions

The SPACE-TIME bound

Theorem. Given a finite presentation, $\exists C>0, \forall n$,

$$
\operatorname{Area}(n) \leq C^{\mathrm{FL}(n)}
$$

The Double Exponential Theorem

Theorem (D.E.Cohen). Given a finite presentation,

$$
\mathcal{P}=\left\langle a_{1}, \ldots, a_{m} \mid r_{1}, \ldots, r_{s}\right\rangle,
$$

$\exists C>0, \forall n$,

$$
\operatorname{Area}(n) \leq n C^{\operatorname{IDiam}(n)}
$$

Proof (Gersten, R.).
$\mathrm{GL}(n) \leq 2 C_{1}^{1}+2 \operatorname{IDiam}(n)$ where $C_{1}=1+2 m$.

$\operatorname{Area}(n) \leq n C_{2} \mathrm{GL}(n)$ where $C_{2}=\max _{j} \ell\left(r_{j}\right)$.

J.R. Stallings: Given a finite presentation, does there always exist $C>0$ such that $\forall n$

$$
\operatorname{Area}(n) \leq C^{\operatorname{IDiam}(n)}
$$

M. Gromov: Given a finite presentation, does there always exist $C>0$ such that $\forall n$

$$
\mathrm{FL}(n) \leq C \operatorname{IDiam}(n) ?
$$

S. Gersten, R.: Is

$$
\mathrm{FL}(n) \simeq \mathrm{GL}(n)
$$

for every finite presentation?

Intrinsic versus extrinsic diameter

Is measuring diameter of van Kampen diagrams extrinsically qualitatively different to measuring it intrinsically?

Are there finite presentations for which $\operatorname{EDiam}(n) \neq \operatorname{IDiam}(n) ?$

Theorem (Bridson, R.). Yes!

For all $\alpha>0$, there is a finite presentation with

$$
n^{\alpha} \operatorname{EDiam}(\mathrm{n}) \preceq \operatorname{IDiam}(n)
$$

Our family of groups:

$$
\Psi_{k, m}=\Phi_{k}{ }^{*}\langle t\rangle \Gamma_{m}
$$

amalgamated along an infinite cyclic subgroup $\langle t\rangle$.

Presentation of Γ_{m}

generators $a_{1}, \ldots, a_{m}, \sigma, t, \tau, T$
relations $\quad \sigma^{-1} a_{m} \sigma=a_{m} ; \forall i<m, \sigma^{-1} a_{i} \sigma=a_{i} a_{i+1}$

$$
\forall j,\left[t, a_{j}\right]=1,[t, T],[\tau, T],
$$

$$
\left[\tau, a_{m} t\right], \forall i<m,\left[\tau, a_{i}\right]
$$

Presentation of Φ_{k}

generators

$s_{1}, \ldots, s_{k}, f, g \quad \hat{s}_{1}, \ldots, \hat{s}_{k}, \hat{f}, \hat{g} \quad b, t$
relations

$$
t^{-1} b s_{k}=b^{3}, s_{k}^{-1} b t=b^{3}, \hat{s}_{k}^{-1} b \hat{s}_{k}=b^{3}
$$

$\forall i<k, \quad f^{-1} s_{k} f=s_{k}, f^{-1} s_{i} f=s_{i} s_{i+1}, \quad \hat{f}^{-1} \hat{s}_{k} \hat{f}=\hat{s}_{k}, \hat{f}^{-1} \hat{s}_{i} \hat{f}=\hat{s}_{i} \hat{s}_{i+1}$

$$
g^{-1} s_{k} g=s_{k}, g^{-1} s_{k-1} g=s_{k-1}, \hat{g}^{-1} \hat{s}_{k} \hat{g}=\hat{s}_{k}, \hat{g}^{-1} \hat{s}_{k-1} \hat{g}=\hat{s}_{k-1}
$$

$\forall i<k-1, g^{-1} s_{i} g=s_{i} s_{i+1}$,
$\hat{g}^{-1} \hat{s}_{i} \hat{g}=\hat{s}_{i} \hat{s}_{i+1}$
$\forall i \neq j, \quad\left[s_{i}, s_{j}\right]=1$,

$$
\left[\hat{s}_{i}, \hat{s}_{j}\right]=1
$$

Dual trees in planar graphs

Question (Gersten-R.). Does there exist $K>0$ such that for all finite planar connected graphs G, there is a spanning tree T in G with

$$
\begin{aligned}
\operatorname{Diam}(T) & \leq K \operatorname{Diam}(G) \text { and } \\
\operatorname{Diam}\left(T^{*}\right) & \leq K \operatorname{Diam}\left(G^{*}\right) ?
\end{aligned}
$$

Theorem (R., Thurston). No!

Proposition (Gersten, R.). Suppose Δ is a combinatorial 2-disc in which every 2 -cell has degree at most λ. If T is a spanning tree in $G=\Delta^{(1)}$ then

$$
\mathrm{FL}(\Delta) \leq \operatorname{Diam}(T)+2 \lambda \operatorname{Diam}\left(T^{*}\right)+\ell(\partial \Delta)
$$

Any loop contracting across
\mathcal{T}_{n} will, at some time, meet $n+1$ edges.

Δ_{n}

$G_{n}=\Delta_{n}$
$\operatorname{Diam}\left(G_{n}\right) \simeq \operatorname{Diam}\left(G_{n}{ }^{*}\right) \simeq n$
(cf. Frankel-Katz)
$\mathrm{FL}\left(\Delta_{n}\right) \succeq n^{2}$
So for all spanning trees T in G_{n},
$\operatorname{Diam}(T)+10 \operatorname{Diam}\left(T^{*}\right)+4 \succeq n^{2}$.

Application. Finding a finitely presented group for which FL $\not \approx \mathrm{IDiam}$ and $\mathrm{FL} \not \approx \mathrm{GL}$.

Candidate. The group generated by
subject to
may have $\operatorname{GL}(n) \simeq \operatorname{IDiam}(n) \preceq n^{3}$ and $\operatorname{FL}(n) \succeq n^{4}$ 。

