Symplectic versus hyperkahler geometry

Cornell Topology Festival

May 2008

SYMPLECTIC MANIFOLDS

Closed nondegenerate 2-form ω on M^{2n}

Local model : $\sum dp_i \wedge dq_i$ on \mathbb{R}^{2n}

EXAMPLES

 \mathbb{C}^n , cotangent bundles T^*N

coadjoint orbit of G (flag manifold)

Kähler manifolds:

metric g, complex structure $I:TM\to TM$ $\omega(X,Y)=g(IX,Y).$

HYPERKAHLER MANIFOLDS

Metric g, complex structures I, J, K with quaternionic relations

$$IJ = K = -JI$$
 etc

Now three symplectic forms

$$\omega_1(X,Y) = g(IX,Y) : \omega_2(X,Y) = g(JX,Y)$$

$$\omega_3(X,Y) = g(KX,Y)$$

Riemannian data; no local model

Examples?

MOMENT MAPS AND SYMPLECTIC REDUCTION

 (M^{2n},ω) with S^1 action: Killing field X

$$1 - form \quad \omega(X, .) = \iota_X \omega$$

$$0 = L_X \omega = d\iota_X \omega + \iota_X d\omega = d\iota_X \omega.$$

In good cases:

$$i_X\omega = d\mu$$

where

$$\mu:M\to\mathbb{R}$$

is S^1 -invariant.

 μ is the *moment map*

Now $\mu^{-1}(\epsilon)/S^1$ is a symplectic manifold of dimension dim M-2.

Example. Flat $\mathbb C$ with standard action of S^1

$$z \mapsto e^{i\theta}z$$
.

Moment map is

$$\phi: z \mapsto |z|^2$$

Only onto half-line. Trivial fibration away from origin. Collapse at origin.

For action of general G, μ takes values in $Lie(G)^*$ and is G-equivariant. Take ϵ in centre; dim of symplectic quotient is dim $M-2\dim G$.

HYPERKAHLER QUOTIENTS

Action of G on M hyperkähler. Moment map

$$\mu = (\mu_1, \mu_2, \mu_3) : M \to Lie(G)^* \otimes \mathbb{R}^3$$

Hyperkähler quotient is

$$\mu^{-1}(\epsilon_1,\epsilon_2,\epsilon_3)/G$$

of dimension $\dim M - 4 \dim G$

Example. Flat $\mathbb H$ with standard action of S^1

$$(z,w)\mapsto (e^{i\theta}z,e^{-i\theta}w)$$

Moment map is

$$\phi: (z, w) \mapsto (\frac{1}{2}(|z|^2 - |w|^2), \text{Re } zw, \text{Im } zw).$$

Difference of squares.

Surjective . Hopf fibration over \mathbb{R}^3 . Collapse at origin.

Singular ϵ -locus typically codim 3 in target; no wall-crossing.

SYMPLECTIC CUTS (E. Lerman 1995).

M symplectic with circle action. Consider $M\times \mathbb{C}$ with action

$$(m,z)\mapsto (e^{i\theta}.m,e^{-i\theta}z)$$

New moment map is

$$\widehat{\mu}:(m,z)\mapsto \mu(m)-|z|^2$$

What does $\hat{\mu}^{-1}(\epsilon)/S^1$ look like ?

For $\mu(m) - |z|^2 = \epsilon$, need

$$\mu(m) \geq \epsilon$$
.

If $\mu(m) > \epsilon$, use circle action to rotate z to real $+\sqrt{\mu(m)-\epsilon}$.

If $\mu(m) = \epsilon$, then z = 0 so can use action to change m.

Symplectic quotient $\hat{\mu}^{-1}(\epsilon)/S^1$ can be identified with

$$\{m \in M : \mu(m) > \epsilon\} \cup \mu^{-1}(\epsilon)/S^1$$

Ie we have cut out "half" the manifold and quotiented the boundary of what is left.

This is the SYMPLECTIC CUT of M at level ϵ .

HYPERKAHLER ANALOGUE ? (D-Swann)

Hyperkähler M with S^1 action. Consider $M \times \mathbb{H}$ with action

$$(m,(z,w))\mapsto (e^{i\theta}.m,(e^{-i\theta}z,e^{i\theta}w)).$$

New moment map is

$$\widehat{\mu}:(m,(z,w))\mapsto \mu(m)-\phi(z,w)$$

where ϕ was moment map for action on \mathbb{H} .

What does $M_{\text{mod}} = \hat{\mu}^{-1}(\epsilon)/S^1$ look like?

$$\mu(m) - \phi(z, w) = \epsilon$$

But ϕ is now ONTO \mathbb{R}^3 so this is always solvable for z,w. No restriction on m, so do not cut out any part of M.

Over $\mu^{-1}(\epsilon)$, fibre of ϕ is just 0, so we get a copy of $\mu^{-1}(\epsilon)/S^1$ in M_{mod} .

CANNOT now identify $M-\mu^{-1}(\epsilon)$, with $M_{\rm mod}-\mu^{-1}(\epsilon)/S^1$ as ϕ gives a NONTRIVIAL (Hopf) fibration.

When we form $M_{\rm mod}$ from M we are adding a new "brane" : codimension 4 hyperkähler submanifold $\mu^{-1}(\epsilon)/S^1$:

Also, the long-range topology of M is getting the symplectic case).

Nonabelian cuts?

Reduce $M \times X$ by G where X has $G \times G$ action and $\dim X = 2 \dim G$ (resp. $4 \dim G$).

Moment geometry of \boldsymbol{X} determines geometry of cut

Weitsman: G = U(n)

$$X = \mathsf{hom}(\mathbb{C}^n, \mathbb{C}^n) : A \mapsto UAV^{-1}$$

$$\phi_{\mathsf{Right}}: A \mapsto A^*A$$

trivial U(n)-fibration over nonnegative matrices, collapsing on boundary.

Fibres are $U(n)_{\mathsf{Left}}$ orbits. Polar decomposition gives section.

Gives description of cutting M, analogous to n=1.

Hyperkähler case?

$$X = \mathsf{hom}(\mathbb{C}^n, \mathbb{C}^n) \oplus \mathsf{hom}(\mathbb{C}^n, \mathbb{C}^n)$$

Action is: $(A, B) \mapsto (UAV^{-1}, VBU^{-1})$

$$\phi_{\mathsf{Right}}: (A,B) \mapsto (A^*A - BB^*, BA)$$

Some fibres are not $U(n)_{\text{Left}}$ -orbits (contrast with n=1)

$$\phi^{-1}(0,0): A = UP, B = PV, \text{ rank } P \leq \frac{1}{2}n.$$

Implosion

Implosion of M is "abelianisation":

$$M//_{\lambda}G = M_{\text{impl}}//_{\lambda}T$$

Universal example: $M = T^*G$ so want

 $M_{\rm impl}//_{\lambda}T=\mathcal{O}_{\lambda}$ coadjoint orbit

Example. G = SU(2), $\mathcal{O}_{\lambda} = S^2$ or *, so

 $M_{\text{impl}} = \mathbb{C}^2$.

In general: take $G \times \mathfrak{t}_+^*$ and collapse by commutator of stabiliser of $t \in \mathfrak{t}_+^*$.

eg for SU(2) take $SU(2) \times [0, \infty)$ and collapse by SU(2) at origin, to obtain \mathbb{C}^2 .

Algebro-geometric description

 $G_{\mathbb{C}}//N:N$ maximal unipotent

eg for SU(2) we have $SL(2,\mathbb{C})//N$

$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \mapsto \begin{pmatrix} x_{11} & x_{12} + nx_{11} \\ x_{21} & x_{22} + nx_{21} \end{pmatrix}$$

Invariants x_{11}, x_{21} , so $SL(2, \mathbb{C})//N = \mathbb{C}^2$.

HK version? (Kirwan-D) work in progress:

$$M = T^*G_{\mathbb{C}}$$
. Want

 $M_{
m impl}///_{\lambda}T\sim$ complex coadjoint orbit

Consider complex-symplectic quotient by N ; this is

$$(G_{\mathbb{C}} \times \mathfrak{b})//N$$

Top stratum:

open set in $G_{\mathbb{C}} \times_N \mathfrak{b}$

= open set in $G_{\mathbb{C}} \times \mathfrak{t}_{\mathbb{C}}$

Bielawski monopole spaces

eg G = SU(2) get $\mathbb{C}^4 = \mathbb{H}^2$. Correct!

For SU(n), link with quiver varieties.

In general torus reductions will give:

Kostant varieties (level sets of the collection of invariant polynomials)

eg regular semisimple orbits

in general, closure of a regular orbit. Union of orbits. Semisimple orbit is lowest stratum

eg nilpotent variety : semisimple stratum is zero matrix