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Hamiltonian T -spaces

Let M be a compact symplectic manifold, with symplectic form ω.
Suppose that T acts on M preserving ω.

Definition

For every ξ ∈ t, let Xξ be the vector field on M generated by the ξ action.
Suppose that the one-form ω(Xξ, ·) is exact, i.e. there exists a function Φξ

satisfying
ω(Xξ, ·) = −dΦξ.

We may put these functions together to form a single map Φ : M → t∗ by
letting Φ(p)(ξ) := Φξ(p) for every p ∈ M, ξ ∈ t. We say that Φ is a
moment map. The existence of such a map is the statement that M is a
Hamiltonian T space.
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Convexity Theorem

Theorem (Guillemin-Sternberg, Atiyah, 1982)

Let M be a connected compact symplectic manifold with a Hamiltonian
group action by an abelian Lie group T. Then the image of the moment
map is a convex polytope. It is the convex hull of the image of the fixed
point set.
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The Hero of the Story:S2

Consider the 2-sphere S2 ⊂ R3 with symplectic form at a point given by
ωp(u, v) = 〈p, u × v〉. Away from the poles, the form is given in polar
coordinates by dθ ∧ dh. S1 acts on S2 by rotating it around z-axis,
generating the vector field ∂

∂θ .

There are two fixed points of points of the action, N and S . The moment
map is the height function h : S2 −→ R taking each point on S2 to its
z-value. Note that the image is a line segment, the convex hull of two
points in R.
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Schur Horn theorem

The Schur-Horn Theorem (1923-1954). Let Oλ be the space of Hermitian
matrices with spectrum λ = (λ1, . . . , λn). Let Φ take a matrix to its
diagonal entries. Then the image of Φ is a convex polytope whose vertices
are the n! permutations of λ.

In particular, if p = (p1, . . . , pn) is in the convex hull of these
permutations, then there exists a matrix with spectrum λ and diagonal
entries p.
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Examples of Hamiltonian T -spaces

Even dimensional vector spaces

Complex Projective space CPn.

Flag Varieties, Grassmannians

Coadjoint orbits of complex semi-simple Lie groups

(Symplectic) toric varieties

If M is a Hamiltonian T -space, then dim M ≥ 2 dim T . When
dim M = 2dim T , then we say that M is a symplectic toric variety.
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Delzant Polytopes and Toric Varieties

A Delzant polytope is a polytope in Rn such that

there are n edges out of each vertex

all edges point in rational directions

the primitive vectors along the edges form a Z-basis of Zn.
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Delzant Polytopes and Toric Varieties

Delzant polytopes classify (symplectic) smooth toric varieties, up to
equivariant symplectomorphism. The Delzant polytope is the image of the
moment map for the T action on the toric variety.
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Towards Generalizations

Orbifold toric varieties

Theorem. (Lerman-Tolman) Symplectic toric orbifolds are classified up to
equivariant symplectomorphism by simple, rational polytopes with a
positive integer associated to each facet. The bijection is via the moment
map.

An Open Question.

Given a polytope in Rn, perhaps decorated with additional information, is
there a Hamiltonian T -space for which this is the image of a moment
map?
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GKM spaces

Suppose the T action on M has the following properties:

T acts in a Hamiltonian fashion
T acts with isolated fixed points MT

For every codimension one subtorus K in T , the connected
components of MK are at most two dimensional.

Definition

In this case, we say that M is a GKM space.
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Equivariant cohomology: one definition.

The Borel construction

Let BG be the classifying space of G , and EG the total space of the
universal bundle over BG = EG/G . Note that G acts freely on EG. Thus
G acts freely on MxEG via the anti-diagonal action. Consider the quotient
MG := M ×G EG . The equivariant cohomology of M is by definition the
singular cohomology of MG i.e.

H∗
G (M) = H∗(MG ).

When G = T is a torus, then BT ' (CP∞)d , d = dim T .
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Properties of abelian equivariant cohomology
HT (M) := H∗(M ×T ET )

The squish map M → pt induces a module structure
H∗

T (pt) → H∗
T (M) on M. When M is a Hamiltonian T space,

H∗
T (M) is a free module over H∗

T (pt).

For T d-dimensional torus acting trivially on a point p,

H∗
T (p) = H∗(ET/T ) = H∗(BT ) = C[u1, . . . , ud ].

If G acts freely on a manifold Y , then H∗
G (Y ) = H∗(Y /G ).

When both a compact connected Lie group G and a maximal abelian
subgroup T ⊂ G act continuously on a topological space M,

H∗
G (M; Q) = H∗

T (M; Q)W

where W is the Weyl group.
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Equivariant Cohomology: The Hamiltonian Case

Let T act on M in a Hamiltonian fashion.

Let MT denote the fixed point set. Then the inclusion MT ↪→ M induces
an injection:

H∗
T (M) → H∗

T (MT ).

Compare to ordinary cohomology, where this would be absurd! Note that
when MT is finite, H∗

T (M) injects into the direct sum of polynomial rings,
one for each fixed point.

Here is an equivariant cohomology class:
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Equivariant Cohomology for GKM spaces

Suppose that M is a GKM space. For every K ⊂ T a codimension-1 torus,
and every connected component MK , associate the weight ηpq of the T
action on Tp(M

K ). Note that ηpq ∈ t∗ and so naturally lives in
H∗

T (pt) = S(t∗). Then the image of the map

H∗
T (M) −→ H∗

T (MT ) =
⊕

r∈MT

H∗
T (r) =

⊕
r∈MT

C[u1, . . . , ud ]

is given by those β ∈
⊕

r∈MT C[u1, . . . , ud ] such that

β(p) = β(q) mod ηpq.

This is not true over Z.

The S1-equivariant cohomology of S2.

Therefore, the cohomology of S1 in C[u]⊕ C[u] is generated as a module
over C[u] by (u, 0), (0, u) and (1, 1).

Rebecca Goldin (GMU) Equivariant cohomology 14 / 37



Equivariant Cohomology for GKM spaces

Suppose that M is a GKM space. For every K ⊂ T a codimension-1 torus,
and every connected component MK , associate the weight ηpq of the T
action on Tp(M

K ). Note that ηpq ∈ t∗ and so naturally lives in
H∗

T (pt) = S(t∗). Then the image of the map

H∗
T (M) −→ H∗

T (MT ) =
⊕

r∈MT

H∗
T (r) =

⊕
r∈MT

C[u1, . . . , ud ]

is given by those β ∈
⊕

r∈MT C[u1, . . . , ud ] such that

β(p) = β(q) mod ηpq.

This is not true over Z.

The S1-equivariant cohomology of S2.

Therefore, the cohomology of S1 in C[u]⊕ C[u] is generated as a module
over C[u] by (u, 0), (0, u) and (1, 1).

Rebecca Goldin (GMU) Equivariant cohomology 14 / 37



Equivariant Cohomology for GKM spaces

Suppose that M is a GKM space. For every K ⊂ T a codimension-1 torus,
and every connected component MK , associate the weight ηpq of the T
action on Tp(M

K ). Note that ηpq ∈ t∗ and so naturally lives in
H∗

T (pt) = S(t∗). Then the image of the map

H∗
T (M) −→ H∗

T (MT ) =
⊕

r∈MT

H∗
T (r) =

⊕
r∈MT

C[u1, . . . , ud ]

is given by those β ∈
⊕

r∈MT C[u1, . . . , ud ] such that

β(p) = β(q) mod ηpq.

This is not true over Z.

The S1-equivariant cohomology of S2.

Therefore, the cohomology of S1 in C[u]⊕ C[u] is generated as a module
over C[u] by (u, 0), (0, u) and (1, 1).

Rebecca Goldin (GMU) Equivariant cohomology 14 / 37



Equivariant Cohomology for GKM spaces

Suppose that M is a GKM space. For every K ⊂ T a codimension-1 torus,
and every connected component MK , associate the weight ηpq of the T
action on Tp(M

K ). Note that ηpq ∈ t∗ and so naturally lives in
H∗

T (pt) = S(t∗). Then the image of the map

H∗
T (M) −→ H∗

T (MT ) =
⊕

r∈MT

H∗
T (r) =

⊕
r∈MT

C[u1, . . . , ud ]

is given by those β ∈
⊕

r∈MT C[u1, . . . , ud ] such that

β(p) = β(q) mod ηpq.

This is not true over Z.

The S1-equivariant cohomology of S2.

Therefore, the cohomology of S1 in C[u]⊕ C[u] is generated as a module
over C[u] by (u, 0), (0, u) and (1, 1).

Rebecca Goldin (GMU) Equivariant cohomology 14 / 37



Equivariant Cohomology for GKM spaces

Suppose that M is a GKM space. For every K ⊂ T a codimension-1 torus,
and every connected component MK , associate the weight ηpq of the T
action on Tp(M

K ). Note that ηpq ∈ t∗ and so naturally lives in
H∗

T (pt) = S(t∗). Then the image of the map

H∗
T (M) −→ H∗

T (MT ) =
⊕

r∈MT

H∗
T (r) =

⊕
r∈MT

C[u1, . . . , ud ]

is given by those β ∈
⊕

r∈MT C[u1, . . . , ud ] such that

β(p) = β(q) mod ηpq.

This is not true over Z.

The S1-equivariant cohomology of S2.

Therefore, the cohomology of S1 in C[u]⊕ C[u] is generated as a module
over C[u] by (u, 0), (0, u) and (1, 1).

Rebecca Goldin (GMU) Equivariant cohomology 14 / 37



Equivariant cohomology: toric varieties

The cohomology of toric varieties is completely determined by the moment
polytope. There is a generator in degree two for each facet of the
polytope. Each such class is the Euler class of the normal bundle to the
corresponding divisor. The relations come from the intersection properties
of the facets on the polytope. This is how the (equivariant)
Stanley-Reisner ring is formed.

The Sphere Again

From this point of view, we have the generators of H∗
S1(S

2) are the class
1, Euler class associated to the North pole, and the Euler class associated
to the South pole. And the product of these two latter two classes is 0,
since the facets do not intersect.
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Equivariant cohomology: toric varieties

The cohomology of toric varieties is completely determined by the moment
polytope. There is a generator in degree two for each facet of the
polytope. Each such class is the Euler class of the normal bundle to the
corresponding divisor. The relations come from the intersection properties
of the facets on the polytope. This is how the (equivariant)
Stanley-Reisner ring is formed.

The Sphere Again

From this point of view, we have the generators of H∗
S1(S

2) are the class
1, Euler class associated to the North pole, and the Euler class associated
to the South pole. And the product of these two latter two classes is 0,
since the facets do not intersect.

Rebecca Goldin (GMU) Equivariant cohomology 15 / 37



Fixed Point Theorems

Atiyah-Bott-Berline-Vergne

Let α ∈ H∗
T (M). Then ∫

M
α =

∑
F

∫
F

α(F )

eT (ν(F ))
,

where the sum is over all components of the fixed point set. If the fixed
points are all isolated, the formula is just a sum of rational functions. The
amazing thing is that this big sum of rational functions is actually
polynomial.
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Another sum of rational functions is polynomial

Theorem (G-Tolman)

Let a torus T act on a compact symplectic manifold (M, ω) with isolated
fixed points and moment map Φ: M → t∗. Fix a generic ξ ∈ t. Assume

that there exists a canonical class αp ∈ H
2λ(p)
T (M; Q) for all p ∈ MT .

Define an oriented graph with vertex set MT and edge set

E =
{

(r , r ′) ∈ MT ×MT
∣∣∣ λ(r ′)− λ(r) = 1 and αr (r

′) 6= 0
}

.

Let Σq
p be the set of paths from p to q in (V ,E ). Define a(r , r ′) = αr (r ′)

Λ−
r′

for each edge (r , r ′) ∈ E . Then for all p, q ∈ MT ,

αp(q) = Λ−q
∑
r∈Σq

p

k∏
i=1

Φ(ri )− Φ(ri−1)

Φ(q)− Φ(ri−1)
a(ri−1, ri ).

Similar formula was found by Guillemin-Zara (but with more paths).
Rebecca Goldin (GMU) Equivariant cohomology 17 / 37



S. Billey

When M is a G/B, for G a complex reductive Lie group and B a Borel
subgroup. Let Sp be a canonical class (Schubert class). They are indexed
by fixed points, which are indexed by elements in the Weyl group. For any
q, fix a reduced word Q = b1 · · · br expression for q, and

Sp(q) =
∑

bi1
bi2
···bik

∈R(p)

k∏
j=1

rb1rb2 · · · rbij−1
αbij

where R(p) are the set of all reduced words for p and αi is the root
corresponding to the simple reflection ri .
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Equivalence between fixed point restrictions and structure
constants

Given a preferred (module-)basis for the equivariant cohomology, the
restriction to the fixed points gives you all the information you need to
multiply in this basis.
Suppose {Si} is a H∗

T (pt)-basis for H∗
T (M). Then structure constants

ck
ij ∈ H∗

T (pt) are defined by

SiSj =
∑
k

ck
ij Sk .

Inductively, can find a formula for ck
ij when you know how Si restricts to

each p ∈ MT for all i .
But it’s not a ”positive relationship”.
This tells us the ordinary cohomology structure constants when M is
Hamiltonian, since H∗

T (M) → H∗(M) is surjective.
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Quotients by group actions can be messy

We would like to quotient our manifold by its symmetries, but this is
topologically messy.

Consider the C∗ action on C given by multiplication by complex numbers.
The quotient space has two orbits, 0 and everything else. Its not
Hausdorff. The idea of Geometric Invariant Theory (GIT) is to rip out the
bad point (0 in this case) and then the action is just C∗ on C∗ . The
quotient is a point.
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Symplectic reduction

Definition

Let M be a compact symplectic manifold with a Hamiltonian T action and
moment map Φ. The symplectic reduction of M at a value µ is the
quotient

M//T (µ) := Φ−1(µ)/T .

The symplectic quotient inherits a symplectic form ωµ from M.

A new description of S2.

Let S1 act on C2 by θ · (z1, z2) = (e2πiθz1, e
2πiθz2). This action is

Hamiltonian with moment map Φ : C2 → R given by

Φ : (z1, z2) 7→
1

2
(||z1||2 + ||z2||2).

Then Φ−1(2) ⊂ C2 is the three sphere with radius 1. Note that S1 also
acts on this 3-sphere, and the quotient forms S2 (via the Hopf fibration).
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Symplectic reduction, cont.

Examples include toric varieties, Grassmannians and CPn, weight varieties,
polygon spaces, the moduli space of flat connections (mod gauge
equivalence), moduli space of points on CPn.
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Equivariant cohomology and Kirwan surjectivity

Let T act on M in a Hamiltonian fashion with proper moment map
Φ : M → t∗.

Theorem (Kirwan).

The inclusion Φ−1(µ) ↪→ M induces a surjection:

κµ : H∗
T (M) → H∗

T (Φ−1(µ)) ∼= H∗(M//T ).

Also fails for ordinary cohomology in simple examples.
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Surjectivity (the Kirwan map)

The kernel of the surjective map

κµ : H∗
T (M) → H∗

T (Φ−1(µ)) ∼= H∗(M//T )

can be computed! Describe the elements in k er(κµ) by describing their
image in H∗

T (MT ).

Tolman-Weitsman

The kernel of κµ is generated by those classes α ∈ H∗
T (M) such that α

restricts to 0 on all fixed points to one side of an affine hyperplane that
goes through µ.
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Jeffrey-Kirwan Localization and consequences

JK Localization for isolated fixed points

Let β ∈ H∗
T (M), and let κµ : H∗

T (M) → H∗(M//T ). Then∫
M//T

κµ(β)eωµ = c · ResΛ
∑

p∈MT

e i(Φ(p)−µ) ι
∗
p(β(X )eω)

ep
[dX ]

where c is a nonzero constant, ResΛ is a multi-dimensional residue,
X ∈ t⊗ C is a variable, and ep is the equivariant Euler class of the normal
bundle to p.

The original purpose of this formula was to find intersection pairings on
the moduli space of holomorphic vector bundles on a Riemann surface.
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Another consequence of JK Localization

G-Holm-Jeffrey

The ideal Iµ := k erκµ is an invariant of the chambers of the moment
map. In other words, µ and ν are in distinct chambers of the image of Φ if
and only if Iµ = Iν in H∗

T (M).

Rebecca Goldin (GMU) Equivariant cohomology 26 / 37



S2 as a symplectic reduction

Let S1 × S1 act on C2 by (θ1, θ2) · (z1, z2) = (e2πiθ1z1, e
2πiθ2z2). We saw

earlier that S2 is formed as a symplectic quotient of C2 by the diagonal
S1 ⊂ S1 × S1. We obtain an equivariant Kirwan map

H∗
T (C2) → H∗

S1(S
2)

where (careful!) this S1 is the residual S1 acting on S2. The kernel of the
map can be computed as in the non-equivariant Kirwan map.

S1-equivariant cohomology of S2 revisited

The (equivariant) TW theorem tells us that we should take the
cohomology of C2 and quotient by the ideal generated by classes which are
0 to one side of a hyperplane through 1. This consists of (any multiple of)
the T = S1 × S1-equivariant Euler class to {0} ∈ C2. Thus

H∗
S1(S

2) = H∗
T (C2)/〈eT ({0})〉 = C[u1, u2]/〈u1u2〉.

Rebecca Goldin (GMU) Equivariant cohomology 27 / 37



When it comes to orbifolds...

Symplectic quotients at regular values are always either manifolds or
orbifolds.

The Lemon

Let S1 act on C2 by θ · (z1, z2) = (e2·2πiθz1, e
3·2πiθz2). The moment map

Φ : C2 −→ R is given by

Φ : (z1, z2) 7→
1

2
(2||z1||2 + 3||z2||2).

The preimage of a regular value (say, 1) is a 3-dimensional ellipsoid. For a
generic point (z1, z2) ∈ Φ−1(1), the group has no isotropy (i.e. the
stabilizer of (z1, z2) is generically just 1 ∈ S1). However, at a point (z1, 0),
there is Z2 isotropy, and at a point (0, z2) there is Z3 isotropy. In the
quotient space, these descend to two orbi-points on a sphere-like object.
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Cohomology fails the lemon

Ordinary cohomology does not see this orbifold structure, and won’t
distinguish between the lemon and the egg. So Chen and Ruan introduced
a new theory of cohomology (that is not a “cohomology theory”), now
called Chen-Ruan cohomology. In particular,

H∗
CR(S2

(2,3)) 6= H∗
CR(S2).

Is there an algebraic invariant that would be subtle enough to detect
differences in orbifolds?
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Chen-Ruan cohomology

Let T act locally freely on a compact stably complex manifold Z , and let
X = Z/T be the quotient orbifold. Let

Z̃ = {(z , g) |z ∈ Z , g ∈ T , g · z = z} ⊂ Z × T .

Note that Z × 1 ⊂ Z̃ .
Since T is abelian, T acts on Z̃ , and we denote the quotient by X̃ . Then

H∗
CR(X ) := H∗(X̃ ) as a group.

The product on Chen-Ruan cohomology

The product is difficult to define because it involves an obstruction bundle.
It is nontrivial to show that the product introduced by Chen-Ruan is
associative. Chen-Ruan cohomology is not a cohomology theory. For
example, an equivariant inclusion of orbifolds does not necessarily induce a
ring map in CR-cohomology.
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Inertial cohomology: a definition without the ring structure

The case of a locally free action suggests a beginning:
H∗

CR(X ) := H∗(X̃ ) = H∗
T (Z̃ ).

Definition of inertial cohomology (G-Holm-Knutson, Chen-Hu

Let Y be a stably almost complex manifold with a T action (that is not
necessarily locally free). Define the inertial cohomology

NH∗
T (Y ) :=

⊕
g∈T

H∗
T (Y g ).

This is also endowed with a twisted product, not the usual one from
equivariant cohomology. Note that when T acts on Y locally freely, the
right hand side is H∗

T (Ỹ ).
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Inertial Cohomology: where to do computations

In the case that Y is a Hamiltonian T space, the funny ring structure on
NH∗

T (Y ) is easy to describe by (injectively) sticking it into the direct sum
of the fixed points (which we assume here to be finite):

NH∗
T (Y ) :=

⊕
g∈T

H∗
T (Y g ) ↪→

⊕
g∈T

⊕
p∈(Y g )T

H∗
T (p).
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A product on inertial cohomology

Under this injection, the product is described by

(b1 ? b2)|F ,g :=
∑

(g1,g2):
g1g2=g

(b1)|F ,g1(b2)|F ,g2

∏
Iλ⊂νF

e(Iλ)a
F
λ(g1)+aF

λ(g2)−aF
λ(g1g2)

where aF
λ (g1) ∈ [0, 1) is the real number such that g1 acts on the

Iλ-component of νF with eigenvalue e2πiaF
λ(g1).

Rebecca Goldin (GMU) Equivariant cohomology 33 / 37



A product on inertial cohomology

Under this injection, the product is described by

(b1 ? b2)|F ,g :=
∑

(g1,g2):
g1g2=g

(b1)|F ,g1(b2)|F ,g2

∏
Iλ⊂νF

e(Iλ)a
F
λ(g1)+aF

λ(g2)−aF
λ(g1g2)

where aF
λ (g1) ∈ [0, 1) is the real number such that g1 acts on the

Iλ-component of νF with eigenvalue e2πiaF
λ(g1).

Rebecca Goldin (GMU) Equivariant cohomology 33 / 37



Kirwan surjectivity in orbifold cohomology

Theorem (G-Holm-Knutson).

Let Y be a Hamiltonian T space, Φ : M → t∗ a moment map, and µ ∈ t a
regular value of Φ. Then there is a surjection of rings

κNH : NH∗
T (Y ) −→ H∗

CR(Φ−1(µ)/T ) = H∗
CR(M//T (µ)).

The kernel of κNH .

The kernel of the map can be computed in exactly the same way that it
was done by Tolman-Weitsman for equivariant cohomology! The
combinatorics are messy but turn out to be ‘easy’.
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More surjectivity for orbifold cohomology

Surjectivity for toric varieties

One consequence is the CR-cohomology for (most) orbifold toric varieties,
sometimes over Z. This was independently calculated by
Borisov-Chen-Smith (over Q). We showed that over Z the
CR-cohomology of an orbifold and the usual cohomology of its crepant
resolutions do not even agree as vector spaces.

Theorem (G-Harada). The hypertoric case

The hyperkähler analogue of κNH is also surjective, and the kernel can be
computed using combinatorial methods. Results in the CR-cohomology of
hypertoric varieties. Jiang-Tseng got similar results using different
techniques.
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Back to the Lemon

Recall S1 acts on C2 with weight 2 on the first component, and weight 3
on the second. Then Φ : C2 → R is given by (z1, z2) 7→ 2||z1||2 + 3||z2||2.
The preimage of a regular value is an ellipsoid Z . Let X = Z/S1 be the
lemon. Then NHS1(Z ) = HCR(X ),and NHS1(C2) � NHS1(Z ).

The CR cohomology is
Q[u, β, γ, δ]/〈uβ, uγ, uδ, u2〉.
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Some open questions

Is there a way to define inertial cohomology for Hamiltonian
G -spaces, where G is not abelian? Does it surject onto the
Chen-Ruan cohomology?

Is there a good definition of the equivariant cohomology of an
orbifold? If so, what are the combinatorial invariants we can use to
compute it?

What are all the K-theoretic analogs of these statements? What are
the implications for representation theory?
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