Fixed points, Ramsey theorems, concentration of measure, and submeasures

Sławomir Solecki

May 2011

Outline Extreme amenability Groups of interest Closed subgroups of S_{∞}

Outline of Topics

2 Groups of interest

3 Closed subgroups of S_{∞}

A 10

B N

Extreme amenability

Sławomir Solecki Fixed points, Ramsey, concentration

< □ > < 同 > < 回 >

э

. ⊒ →

Definition

A topological group G is **extremely amenable** if each continuous action of G on a compact space has a fixed point.

Image: A image: A

Definition

A topological group G is **extremely amenable** if each continuous action of G on a compact space has a fixed point.

Recall: G is amenable if each continuous action of G on a compact space has an invariant non-zero probability measure.

Veech: No locally compact group is extremely amenable.

< □ > < 同 > < 回 >

э

∃ >

Veech: No locally compact group is extremely amenable.

Gromov-Milman: Let H be a separable, infinite dimensional, complex Hilbert space. Let U(H) be the unitary group with the strong operator topology. The group U(H) is extremely amenable.

Veech: No locally compact group is extremely amenable.

Gromov-Milman: Let H be a separable, infinite dimensional, complex Hilbert space. Let U(H) be the unitary group with the strong operator topology. The group U(H) is extremely amenable.

We consider **Polish groups**, that is, completely metrizable, separable topological groups, for example, U(H).

Groups of interest

Sławomir Solecki Fixed points, Ramsey, concentration

Image: A math a math

э

∃ >

Closed subgroups of S_∞

< □ > < 同 > < 回 > <

æ

- ∢ ≣ ▶

 S_∞ the group of all permutations of $\mathbb N$ with the pointwise convergence topology.

< □ > < 同 > < 回 > <

 S_∞ the group of all permutations of $\mathbb N$ with the pointwise convergence topology.

We consider **closed** $G < S_{\infty}$.

< 日 > < 同 > < 三 > < 三 >

э

 S_∞ the group of all permutations of $\mathbb N$ with the pointwise convergence topology.

We consider **closed** $G < S_{\infty}$.

These are precisely Polish groups with a basis at 1 consisting of open subgroups.

< □ > < 同 > < 回 >

 S_∞ the group of all permutations of $\mathbb N$ with the pointwise convergence topology.

We consider **closed** $G < S_{\infty}$.

These are precisely Polish groups with a basis at 1 consisting of open subgroups. They are totally disconnected.

< □ > < 同 > < 三 >

L_0 groups

æ

Let ϕ be a **submeasure** defined on clopen subsets $2^{\mathbb{N}}$,

<ロ> <同> <同> < 同> < 同>

э

Let ϕ be a **submeasure** defined on clopen subsets $2^{\mathbb{N}}$, so it is monotone, subadditive, and assigns 0 to \emptyset .

< □ > < 同 > < 回 > <

Let ϕ be a **submeasure** defined on clopen subsets $2^{\mathbb{N}}$, so it is monotone, subadditive, and assigns 0 to \emptyset .

 ϕ is a $\ensuremath{\mbox{measure}}$ if it is additive on disjoint sets.

< □ > < 同 > < 回 >

Let ϕ be a **submeasure** defined on clopen subsets $2^{\mathbb{N}}$, so it is monotone, subadditive, and assigns 0 to \emptyset .

 ϕ is a **measure** if it is additive on disjoint sets.

 ϕ is **diffuse** if for each $\epsilon > 0$ there is a cover of $2^{\mathbb{N}}$ with clopen sets of ϕ -submeasure $< \epsilon$.

Let ϕ be a **submeasure** defined on clopen subsets $2^{\mathbb{N}}$, so it is monotone, subadditive, and assigns 0 to \emptyset .

 ϕ is a $\ensuremath{\mbox{measure}}$ if it is additive on disjoint sets.

 ϕ is **diffuse** if for each $\epsilon > 0$ there is a cover of $2^{\mathbb{N}}$ with clopen sets of ϕ -submeasure $< \epsilon$.

We will assume that submeasures are diffuse.

We consider

$L_0(\phi, H)$

for a locally compact, second countable, **abelian** H.

э

(日) (同) (三) (三)

We consider

$L_0(\phi,H)$

for a locally compact, second countable, **abelian** H.

Description: take the set S of all step-functions from $2^{\mathbb{N}}$ to the group (these are continuous functions with finitely many values); complete S with respect to convergence in submeasure ϕ .

We consider

$L_0(\phi,H)$

for a locally compact, second countable, **abelian** H.

Description: take the set S of all step-functions from $2^{\mathbb{N}}$ to the group (these are continuous functions with finitely many values); complete S with respect to convergence in submeasure ϕ .

These groups are connected.

< 6 >

We consider

$L_0(\phi,H)$

for a locally compact, second countable, **abelian** H.

Description: take the set S of all step-functions from $2^{\mathbb{N}}$ to the group (these are continuous functions with finitely many values); complete S with respect to convergence in submeasure ϕ .

These groups are connected. If ϕ is a measure, then $L_0(\phi, \mathbb{T})$ shows up as a maximal abelian subgroup of U(H).

We consider

$L_0(\phi,H)$

for a locally compact, second countable, **abelian** H.

Description: take the set S of all step-functions from $2^{\mathbb{N}}$ to the group (these are continuous functions with finitely many values); complete S with respect to convergence in submeasure ϕ .

These groups are connected. If ϕ is a measure, then $L_0(\phi, \mathbb{T})$ shows up as a maximal abelian subgroup of U(H).

 $L_0(\phi, \mathbb{Z}/2), \ L_0(\phi, \mathbb{Z}), \ L_0(\phi, \mathbb{T}), \ L_0(\phi, \mathbb{R})$

is a representative sample.

・ ロ ト ・ 同 ト ・ 三 ト ・

Closed subgroups of S_∞

Sławomir Solecki Fixed points, Ramsey, concentration

э

(日) (同) (三) (三)

Consider a countable family \mathcal{F} of finite structures.

(日)

э

< ∃ →

Consider a countable family ${\mathcal F}$ of finite structures.

Examples:

< □ > < 同 > < 回 >

э

Consider a countable family ${\mathcal F}$ of finite structures.

Examples:

1. finite linear orders;

< □ > < 同 > < 回 >

э

∃ >

Consider a countable family $\mathcal F$ of finite structures.

Examples:

- 1. finite linear orders;
- 2. finite graphs/finite linearly ordered graphs;

< □ > < 同 > < 回 >

∃ >

Consider a countable family \mathcal{F} of finite structures.

Examples:

- 1. finite linear orders;
- 2. finite graphs/finite linearly ordered graphs;
- 3. finite metric spaces with rational distances/linearly ordered such metric spaces.

Image: A math a math

Assumptions on \mathcal{F} :

< □ > < 同 > < 三 >

→

æ

Assumptions on \mathcal{F} :

(a) closed under substructures;

< □ > < 同 > < 回 >

э

∃ >

Assumptions on \mathcal{F} :

- (a) closed under substructures;
- (b) directed with respect to embeddings;

< □ > < 同 > < 回 >

-

э

Assumptions on \mathcal{F} :

- (a) closed under substructures;
- (b) directed with respect to embeddings;
- (c) amalgamation holds in it.

< 4 ₽ > < Ξ

Assumptions on \mathcal{F} :

- (a) closed under substructures;
- (b) directed with respect to embeddings;
- (c) amalgamation holds in it.

Such an \mathcal{F} is called a **Fraissé class**.

< A >
Assumptions on \mathcal{F} :

- (a) closed under substructures;
- (b) directed with respect to embeddings;
- (c) amalgamation holds in it.

Such an \mathcal{F} is called a **Fraissé class**.

All the classes mentioned above are Fraissé.

< 67 ▶

Given a countable Fraissé class \mathcal{F} , there is a unique ultrahomogeneous countable structure M with

 $\mathcal{F} =$ all finite substructures of M.

(日)

Given a countable Fraissé class \mathcal{F} , there is a unique ultrahomogeneous countable structure M with

 $\mathcal{F} =$ all finite substructures of M.

Ultrahomogeneous = all partial *finite* isomorphisms extend to automorphisms of M.

- - ◆ 同 ▶ - ◆ 目 ▶

Given a countable Fraissé class \mathcal{F} , there is a unique ultrahomogeneous countable structure M with

 $\mathcal{F} =$ all finite substructures of M.

Ultrahomogeneous = all partial *finite* isomorphisms extend to automorphisms of M.

Notation:

 $M = \lim \mathcal{F}.$

A B > A B >

Given a countable Fraissé class \mathcal{F} , there is a unique ultrahomogeneous countable structure M with

 $\mathcal{F} =$ all finite substructures of M.

Ultrahomogeneous = all partial *finite* isomorphisms extend to automorphisms of M.

Notation:

 $M = \lim \mathcal{F}.$

M is the **Fraissé limit of** \mathcal{F} .

Examples:

Sławomir Solecki Fixed points, Ramsey, concentration

Examples:

1. $\mathbb{Q} = \lim\{\text{finite linear orders}\};$

Image: A math a math

æ

. ⊒ →

Examples:

- 1. $\mathbb{Q} = \lim\{\text{finite linear orders}\};$
- 2. random graph = lim{finite graphs};

Image: A math a math

э

∃ >

Examples:

- 1. $\mathbb{Q} = \lim\{\text{finite linear orders}\};$
- random graph = lim{finite graphs}; linearly ordered random graph = lim{linearly ordered finite graphs};

< A ▶

Examples:

- 1. $\mathbb{Q} = \lim\{\text{finite linear orders}\};$
- random graph = lim{finite graphs}; linearly ordered random graph = lim{linearly ordered finite graphs};
- rational Urysohn space = lim{finite metric spaces with rational distances};

< A > < 3

Examples:

- 1. $\mathbb{Q} = \lim\{\text{finite linear orders}\};$
- random graph = lim{finite graphs}; linearly ordered random graph = lim{linearly ordered finite graphs};
- rational Urysohn space = lim{finite metric spaces with rational distances}; linearly ordered rational Urysohn space = lim{linearly ordedred finite metric spaces with rational distances}.

G an **arbitrary closed** subgroup of S_{∞} .

(日)

э

< ∃ >

G an **arbitrary closed** subgroup of $S_\infty.$ There is a countable Fraissé class $\mathcal F$ with

 $G = \operatorname{Aut}(\operatorname{lim} \mathcal{F}).$

< □ > < 同 > < 回 >

G an **arbitrary closed** subgroup of $S_\infty.$ There is a countable Fraissé class $\mathcal F$ with

 $G = \operatorname{Aut}(\operatorname{lim} \mathcal{F}).$

So $\operatorname{Aut}(\operatorname{lim} \mathcal{F})$ is a completely general closed subgroup of S_{∞} .

< □ > < 同 > < 回 >

${\mathcal F}$ has the Ramsey property

(日)

문 🛌 문

${\mathcal F}$ has the Ramsey property if for each $A,B\in {\mathcal F}$ and an integer d>0

< □ > < 同 > < 回 >

э

\mathcal{F} has the **Ramsey property** if for each $A, B \in \mathcal{F}$ and an integer d > 0 there exists $C \in \mathcal{F}$ such that for each *d*-coloring of all copies of A in C

Image: A math a math

 \mathcal{F} has the **Ramsey property** if for each $A, B \in \mathcal{F}$ and an integer d > 0 there exists $C \in \mathcal{F}$ such that for each *d*-coloring of all copies of A in C there is a copy B' of B in C such that all copies of A in B' get the same color.

 \mathcal{F} has the **Ramsey property** if for each $A, B \in \mathcal{F}$ and an integer d > 0 there exists $C \in \mathcal{F}$ such that for each *d*-coloring of all copies of A in C there is a copy B' of B in C such that all copies of A in B' get the same color.

 ${\mathcal F}$ is ordered

 \mathcal{F} has the **Ramsey property** if for each $A, B \in \mathcal{F}$ and an integer d > 0 there exists $C \in \mathcal{F}$ such that for each *d*-coloring of all copies of A in C there is a copy B' of B in C such that all copies of A in B' get the same color.

 ${\mathcal F}$ is ${\rm ordered}$ if each structure in ${\mathcal F}$ carries a linear order.

A (1) < A (1)</p>

Theorem (Kechris–Pestov–Todorcevic)

Let \mathcal{F} be a countable Fraissé class. Assume that \mathcal{F} is ordered and has the Ramsey property. Then Aut(lim \mathcal{F}) is extremely amenable.

A B > A B >

Theorem (Kechris–Pestov–Todorcevic)

Let \mathcal{F} be a countable Fraissé class. Assume that \mathcal{F} is ordered and has the Ramsey property. Then $\operatorname{Aut}(\lim \mathcal{F})$ is extremely amenable. The converse holds as well.

- - ◆ 同 ▶ - ◆ 目 ▶

Connections with Structural Ramsey Theory:

(日)

Connections with Structural Ramsey Theory:

Ramsey: finite linear orders have the Ramsey property;

< □ > < 同 > < 回 >

< ∃ →

Ramsey: finite linear orders have the Ramsey property; Nešetřil–Rödl: finite linearly ordered graphs have the Ramsey property;

< □ > < 同 > < 回 >

34.16

Ramsey: finite linear orders have the Ramsey property;

Nešetřil–Rödl: finite linearly ordered graphs have the Ramsey property;

Nešetřil: finite linearly ordered metric spaces with rational distances have the Ramsey property.

Ramsey: finite linear orders have the Ramsey property;

Nešetřil–Rödl: finite linearly ordered graphs have the Ramsey property;

Nešetřil: finite linearly ordered metric spaces with rational distances have the Ramsey property.

Consequences:

Ramsey: finite linear orders have the Ramsey property;

Nešetřil–Rödl: finite linearly ordered graphs have the Ramsey property;

Nešetřil: finite linearly ordered metric spaces with rational distances have the Ramsey property.

Consequences:

 $Aut(\mathbb{Q})$, Aut(linearly ordered random graph), Aut(linearly ordered rational Urysohn) are all extremely amenable.

Ramsey: finite linear orders have the Ramsey property;

Nešetřil–Rödl: finite linearly ordered graphs have the Ramsey property;

Nešetřil: finite linearly ordered metric spaces with rational distances have the Ramsey property.

Consequences:

 $Aut(\mathbb{Q})$, Aut(linearly ordered random graph), Aut(linearly ordered rational Urysohn) are all extremely amenable.

The results above make it possible to compute universal minimal flows of Aut(random graph) and Aut(rational Urysohn).

L₀ groups

Sławomir Solecki Fixed points, Ramsey, concentration

*ロ * * @ * * 注 * * 注 *

Conventions:

Conventions:

 $-\phi$ is a diffuse submeasure;

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conventions:

- $-\phi$ is a diffuse submeasure;
- *H* is a locally compact, second countable, **abelian** group;

< □ > < 同 > < 回 >

Conventions:

- $-\phi$ is a diffuse submeasure;
- *H* is a locally compact, second countable, **abelian** group;
- consider $L_0(\phi, H)$.

< □ > < 同 > < 回 >

э

Theorem (Farah–S.)

$L_0(\phi, H)$ is extremely amenable if H is compact.

(a)

Theorem (Farah–S.)

 $L_0(\phi, H)$ is extremely amenable if H is compact.

The proof uses a Ramsey-type theorem,

(日)
Theorem (Farah–S.)

 $L_0(\phi, H)$ is extremely amenable if H is compact.

The proof uses a Ramsey-type theorem, whose proof relies on a generalization of the Borsuk-Ulam theorem on antipodal points.

< □ > < 同 > < 回 >

Types of submeasures ϕ :

< □ > < 同 > < 三 >

3. 3

Types of submeasures ϕ :

- pathological submeasures (no measures $\leq \phi$);

< □ > < 同 > < 回 >

э

∃ >

Types of submeasures ϕ :

- pathological submeasures (no measures $\leq \phi$);
- measures;

< □ > < 同 > < 回 > <

Types of submeasures ϕ :

- pathological submeasures (no measures $\leq \phi$);
- measures;
- Hausdorff submeasures (many measures $\leq \phi$).

< □ > < 同 > < 回 > <

For a sequence of subsets A_1, \ldots, A_n of X, let

$$t(A_1,\ldots,A_n) = \max\{k \colon \forall x \in X \mid \{i \le n \colon x \in A_i\} \mid \ge k\}.$$

æ

For a sequence of subsets A_1, \ldots, A_n of X, let

$$t(A_1,\ldots,A_n) = \max\{k \colon \forall x \in X | \{i \le n \colon x \in A_i\} | \ge k\}.$$

 ϕ a submeasure.

(日)

э

- ∢ ≣ ▶

For a sequence of subsets A_1, \ldots, A_n of X, let

$$t(A_1,\ldots,A_n) = \max\{k \colon \forall x \in X \mid \{i \le n \colon x \in A_i\} \mid \ge k\}.$$

 ϕ a submeasure. Let \mathcal{A}_{ξ} consist of all clopen sets with $\phi(\mathcal{A}) < \xi$.

< □ > < 同 > < 回 > <

- ∢ ≣ ▶

For a sequence of subsets A_1, \ldots, A_n of X, let

$$t(A_1,\ldots,A_n) = \max\{k \colon \forall x \in X | \{i \le n \colon x \in A_i\} | \ge k\}.$$

 ϕ a submeasure. Let A_{ξ} consist of all clopen sets with $\phi(A) < \xi$. Define

$$h_{\phi}(\xi) = \sup rac{t(A_1,\ldots,A_n)}{\xi \cdot n},$$

where sup is taken over all sequences A_1, \ldots, A_n of sets in \mathcal{A}_{ξ} .

Proposition (S.)

Let ϕ be a submeasure. Then

$$h_{\phi} \sim rac{1}{\xi}$$
 or

$$h_{\phi}\sim$$
 a for some $0\leq$ a $<\infty.$

æ

Proposition (S.)

Let ϕ be a submeasure. Then

$$h_{\phi} \sim rac{1}{\xi}$$
 or

$$h_{\phi}\sim a~$$
 for some $0\leq a<\infty.$

 ϕ pathological $\Leftrightarrow h_{\phi} \sim \frac{1}{\xi}$.

・ロン ・雪 と ・ ヨ と ・ ヨ と

æ

Proposition (S.)

Let ϕ be a submeasure. Then

$$h_{\phi} \sim rac{1}{\xi}$$
 or

$$h_{\phi}\sim a~$$
 for some $0\leq a<\infty.$

 ϕ pathological $\Leftrightarrow h_{\phi} \sim \frac{1}{\xi}$. ϕ a measure $\Rightarrow h_{\phi} \sim 1$.

э

(日) (同) (日) (日) (日)

Proposition (S.)

Let ϕ be a submeasure. Then

$$h_{\phi} \sim rac{1}{\xi}$$
 or

$$h_{\phi}\sim$$
 a for some $0\leq$ a $<\infty.$

 ϕ pathological $\Leftrightarrow h_{\phi} \sim \frac{1}{\xi}$. ϕ a measure $\Rightarrow h_{\phi} \sim 1$. ϕ Hausdorff $\Leftrightarrow h_{\phi} \sim 0$.

(日) (同) (三) (三)

3

Pathological submeasures are generic submeasures.

э

Pathological submeasures are generic submeasures. They show up, for example, in measure theory, in graph theory, and in the study of ideals of subsets of \mathbb{N} .

< A >

Pathological submeasures are generic submeasures. They show up, for example, in measure theory, in graph theory, and in the study of ideals of subsets of \mathbb{N} .

Hausdorff submeasures show up as approximations to Hausdorff measures.

Pathological submeasures

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

Pathological submeasures

Theorem (Herer–Christensen, S.)

 $L_0(\phi, H)$ is extremely amenable if ϕ is pathological.

(日)

∃ >

Pathological submeasures

Theorem (Herer–Christensen, S.)

 $L_0(\phi, H)$ is extremely amenable if ϕ is pathological.

Herer–Christensen's proof for $H = \mathbb{R}$ uses spectral theorem.

< □ > < 同 > < 回 >

Outline Extreme amenability Groups of interest Closed subgroups of S_{∞} L_0 groups

Pathological submeasures

Theorem (Herer–Christensen, S.)

 $L_0(\phi, H)$ is extremely amenable if ϕ is pathological.

Herer–Christensen's proof for $H = \mathbb{R}$ uses spectral theorem.

S's proof for general H uses **concentration of measure** derived from the Brascamp-Lieb inequality,

Image: A math a math

Pathological submeasures

Theorem (Herer–Christensen, S.)

 $L_0(\phi, H)$ is extremely amenable if ϕ is pathological.

Herer–Christensen's proof for $H = \mathbb{R}$ uses spectral theorem.

S's proof for general H uses **concentration of measure** derived from the Brascamp–Lieb inequality, which generalizes the Loomis–Whitney inequality

$$\operatorname{vol}(A) \leq \prod_{i=1}^{n} \operatorname{vol}(\operatorname{proj}_{i}(A))^{1/n-1},$$

where $A \subseteq \mathbb{R}^n$ and proj_i is the projection along the *i*-th axis.

Measures

*ロ * * @ * * 注 * * 注 *

æ

Measures

Theorem (Glasner, Furstenberg–Weiss)

 $L_0(\phi, H)$ is extremely amenable if ϕ is a measure.

э

Measures

Theorem (Glasner, Furstenberg–Weiss)

 $L_0(\phi, H)$ is extremely amenable if ϕ is a measure.

The proof uses the classical **concentration of measure** in product spaces going back to Milman–Schechtman.

• □ > • □ > • □ > • □ > •

Concentration of measure enters the proofs through the following notion.

э

Concentration of measure enters the proofs through the following notion.

Gromov-Milman: G is Lévy if

э

Concentration of measure enters the proofs through the following notion.

Gromov–Milman: G is Lévy if there are compact subgroups $K_1 < K_2 < K_3 < \cdots$ such that

Concentration of measure enters the proofs through the following notion.

Gromov–Milman: G is **Lévy** if there are compact subgroups $K_1 < K_2 < K_3 < \cdots$ such that $\bigcup_n K_n$ is dense in G and

< □ > < 同 > < 三 >

Concentration of measure enters the proofs through the following notion.

Gromov–Milman: *G* is **Lévy** if there are compact subgroups $K_1 < K_2 < K_3 < \cdots$ such that $\bigcup_n K_n$ is dense in *G* and for all $A_n \subset K_n$ with $\inf_n \mu_n(A_n) > 0$ and for each $U \ni 1$ open in *G*, we have

$$\lim_n \mu_n(UA_n) = 1,$$

where μ_n is the normalized Haar measure on K_n .

Hausdorff submeasures

æ

Hausdorff submeasures

Theorem (Farah–S.)

 $L_0(\phi, H)$ does **not** have concentration of measure (is not Lévy) for zero dimensional, compact, non-trivial H and for certain Hausdorff ϕ .

< 同 > < 3

Question: Is $L_0(\phi, \mathbb{Z})$ extremely amenable for some (Hausdorff) ϕ ?

< □ > < 同 > < 回 >

Question: Is $L_0(\phi, \mathbb{Z})$ extremely amenable for some (Hausdorff) ϕ ? **Hope**: NO.

< □ > < 同 > < 回 >

Question: Is $L_0(\phi, \mathbb{Z})$ extremely amenable for some (Hausdorff) ϕ ? **Hope**: NO.

It would produce an abelian group with no characters but with a fixed point free, continuous action on a compact space, answering a question of Pestov.

A (1) < 3</p>

Question: Is $L_0(\phi, H)$ extremely amenable for each compact, not necessarily abelian, group H?

< □ > < 同 > < 回 >

э

∃ >

Question: Is $L_0(\phi, H)$ extremely amenable for each compact, not necessarily abelian, group H?

An extension of the Ramsey theorem based on Borsuk–Ulam to non-commutative context is needed.

< □ > < 同 > < 回 >