Group acting on Λ trees

Olga Kharlampovich (McGill University)

Cornell, 2011

- 4 同 6 4 日 6 4 日 6

This talk is based on joint results with A. Myasnikov and D. Serbin.

э

The starting point

Theorem . A group G is free if and only if it acts freely on a tree.

Free action = no inversion of edges and stabilizers of vertices are trivial.

< 日 > < 同 > < 三 > < 三 >

Ordered abelian groups

 $\Lambda =$ an ordered abelian group (any $a, b \in \Lambda$ are comparable and for any $c \in \Lambda$: $a \leq b \Rightarrow a + c \leq b + c$).

Examples:

Archimedean case:

 $\Lambda = \mathbb{R}, \ \Lambda = \mathbb{Z}$ with the usual order.

Non-Archimedean case:

 $\Lambda = \mathbb{Z}^2$ with the right lexicographic order:

 $(a,b) < (c,d) \iff b < d \text{ or } b = d \text{ and } a < c.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ordered abelian groups

 $\Lambda =$ an ordered abelian group (any $a, b \in \Lambda$ are comparable and for any $c \in \Lambda$: $a \leq b \Rightarrow a + c \leq b + c$).

Examples:

Archimedean case:

 $\Lambda=\mathbb{R},\ \Lambda=\mathbb{Z}$ with the usual order.

Non-Archimedean case:

 $\Lambda = \mathbb{Z}^2$ with the right lexicographic order:

$(a,b) < (c,d) \iff b < d \text{ or } b = d \text{ and } a < c.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ordered abelian groups

 $\Lambda =$ an ordered abelian group (any $a, b \in \Lambda$ are comparable and for any $c \in \Lambda$: $a \leq b \Rightarrow a + c \leq b + c$).

Examples:

Archimedean case:

 $\Lambda=\mathbb{R},\ \Lambda=\mathbb{Z}$ with the usual order.

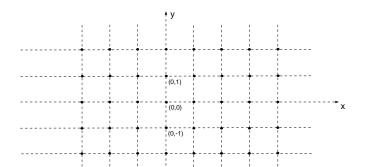
Non-Archimedean case:

 $\Lambda = \mathbb{Z}^2$ with the right lexicographic order:

$$(a,b) < (c,d) \iff b < d \text{ or } b = d \text{ and } a < c.$$

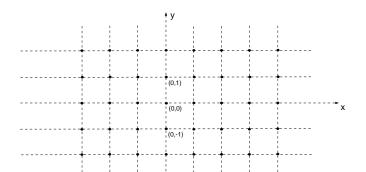
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

\mathbb{Z}^2 with the right-lex ordering



One-dimensional picture

\mathbb{Z}^2 with the right-lex ordering



One-dimensional picture

Λ-trees

Morgan and Shalen (1985) defined A-trees:

A Λ -tree is a metric space (X, p) (where $p : X \times X \to \Lambda$) which satisfies the following properties:

- 1) (X, p) is geodesic,
- 2) if two segments of (X, p) intersect in a single point, which is an endpoint of both, then their union is a segment,
- 3) the intersection of two segments with a common endpoint is also a segment.

Alperin and Bass (1987) developed the theory of Λ -trees and stated the fundamental research goals:

Find the group theoretic information carried by an action on a $\Lambda\text{-}\text{tree}.$

Λ-trees

Morgan and Shalen (1985) defined A-trees:

A Λ -tree is a metric space (X, p) (where $p : X \times X \to \Lambda$) which satisfies the following properties:

- 1) (X, p) is geodesic,
- 2) if two segments of (X, p) intersect in a single point, which is an endpoint of both, then their union is a segment,
- 3) the intersection of two segments with a common endpoint is also a segment.

Alperin and Bass (1987) developed the theory of Λ -trees and stated the fundamental research goals:

Find the group theoretic information carried by an action on a $\Lambda\text{-tree}.$

Generalize Bass-Serre theory (for actions on $\mathbb{Z}\text{-trees})$ to actions on arbitrary $\Lambda\text{-trees}.$

B b

Examples for $\Lambda = \mathbb{R}$

$X = \mathbb{R}$ with usual metric.

A geometric realization of a simplicial tree.

 $X = \mathbb{R}^2$ with metric *d* defined by

$$d((x_1, y_1), (x_2, y_2)) = \begin{cases} |y_1| + |y_2| + |x_1 - x_2| & \text{if } x_1 \neq x_2 \\ |y_1 - y_2| & \text{if } x_1 = x_2 \end{cases}$$

Examples for $\Lambda = \mathbb{R}$

 $X = \mathbb{R}$ with usual metric.

A geometric realization of a simplicial tree.

 $X = \mathbb{R}^2$ with metric *d* defined by

$$d((x_1, y_1), (x_2, y_2)) = \begin{cases} |y_1| + |y_2| + |x_1 - x_2| & \text{if } x_1 \neq x_2 \\ |y_1 - y_2| & \text{if } x_1 = x_2 \end{cases}$$

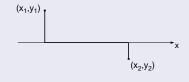
Examples for $\Lambda = \mathbb{R}$

 $X = \mathbb{R}$ with usual metric.

A geometric realization of a simplicial tree.

 $X = \mathbb{R}^2$ with metric d defined by

$$d((x_1, y_1), (x_2, y_2)) = \begin{cases} |y_1| + |y_2| + |x_1 - x_2| & \text{if } x_1 \neq x_2 \\ |y_1 - y_2| & \text{if } x_1 = x_2 \end{cases}$$



Finitely generated \mathbb{R} -free groups

Rips' Theorem [Rips, 1991 - not published]

A f.g. group acts freely on \mathbb{R} -tree if and only if it is a free product of surface groups (except for the non-orientable surfaces of genus 1,2, 3) and free abelian groups of finite rank.

Gaboriau, Levitt, Paulin (1994) gave a complete proof of Rips' Theorem.

Bestvina, Feighn (1995) gave another proof of Rips' Theorem proving a more general result for stable actions on \mathbb{R} -trees.

- 4 同 6 4 回 6 4 回 6

Finitely generated \mathbb{R} -free groups

Rips' Theorem [Rips, 1991 - not published]

A f.g. group acts freely on \mathbb{R} -tree if and only if it is a free product of surface groups (except for the non-orientable surfaces of genus 1,2, 3) and free abelian groups of finite rank.

Gaboriau, Levitt, Paulin (1994) gave a complete proof of Rips' Theorem.

Bestvina, Feighn (1995) gave another proof of Rips' Theorem proving a more general result for stable actions on \mathbb{R} -trees.

- 4 同 2 4 日 2 4 日 2

Finitely generated \mathbb{R} -free groups

Rips' Theorem [Rips, 1991 - not published]

A f.g. group acts freely on \mathbb{R} -tree if and only if it is a free product of surface groups (except for the non-orientable surfaces of genus 1,2, 3) and free abelian groups of finite rank.

Gaboriau, Levitt, Paulin (1994) gave a complete proof of Rips' Theorem.

Bestvina, Feighn (1995) gave another proof of Rips' Theorem proving a more general result for stable actions on \mathbb{R} -trees.

- 4 同 2 4 日 2 4 日 2

Properties

Some properties of groups acting freely on Λ -trees (Λ -free groups)

- The class of Λ-free groups is closed under taking subgroups and free products.
- **2** Λ -free groups are torsion-free.
- Λ-free groups have the CSA-property (maximal abelian subgroups are malnormal).
- Commutativity is a transitive relation on the set of non-trivial elements.
- Any two-generator subgroup of a Λ-free group is either free or free abelian.

(日) (同) (三) (三)

The following is a principal step in the Alperin-Bass' program:

Open Problem [Rips, Bass]

Describe finitely generated groups acting freely on Λ -trees.

Here "describe" means "describe in the standard group-theoretic terms".

We solved this problem for finitely presented groups. Λ-free groups = groups acting freely on Λ-trees.

< ロ > < 同 > < 回 > < 回 >

The following is a principal step in the Alperin-Bass' program:

Open Problem [Rips, Bass]

Describe finitely generated groups acting freely on Λ -trees.

Here "describe" means "describe in the standard group-theoretic terms".

We solved this problem for finitely presented groups. Λ-free groups = groups acting freely on Λ-trees.

< ロ > < 同 > < 回 > < 回 >

The following is a principal step in the Alperin-Bass' program:

Open Problem [Rips, Bass]

Describe finitely generated groups acting freely on Λ -trees.

Here "describe" means "describe in the standard group-theoretic terms".

We solved this problem for finitely presented groups. A-free groups = groups acting freely on A-trees.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The following is a principal step in the Alperin-Bass' program:

Open Problem [Rips, Bass]

Describe finitely generated groups acting freely on Λ -trees.

Here "describe" means "describe in the standard group-theoretic terms".

We solved this problem for finitely presented groups. Λ -free groups = groups acting freely on Λ -trees.

Non-Archimedean actions

Theorem (H.Bass, 1991)

A finitely generated $(\Lambda \oplus \mathbb{Z})$ -free group is the fundamental group of a finite graph of groups with properties:

- vertex groups are Λ-free,
- edge groups are maximal abelian (in the vertex groups),
- edge groups embed into Λ.

Since $\mathbb{Z}^n \simeq \mathbb{Z}^{n-1} \oplus \mathbb{Z}$ this gives the algebraic structure of \mathbb{Z}^n -free groups.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Non-Archimedean actions

Theorem (H.Bass, 1991)

A finitely generated ($\Lambda \oplus \mathbb{Z}$)-free group is the fundamental group of a finite graph of groups with properties:

- vertex groups are Λ-free,
- edge groups are maximal abelian (in the vertex groups),
- edge groups embed into Λ.

Since $\mathbb{Z}^n \simeq \mathbb{Z}^{n-1} \oplus \mathbb{Z}$ this gives the algebraic structure of \mathbb{Z}^n -free groups.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Actions on \mathbb{R}^n -trees

Theorem [Guirardel, 2003]

A f.g. freely indecomposable \mathbb{R}^{n} -free group is isomorphic to the fundamental group of a finite graph of groups, where each vertex group is f.g. \mathbb{R}^{n-1} -free, and each edge group is cyclic.

However, the converse is not true.

Corollary A f.g. \mathbb{R}^n -free group is hyperbolic relative to abelian subgroups.

Notice, that \mathbb{Z}^n -free groups are \mathbb{R}^n -free.

- 4 同 ト 4 目 ト 4 目 ト

Actions on \mathbb{R}^n -trees

Theorem [Guirardel, 2003]

A f.g. freely indecomposable \mathbb{R}^{n} -free group is isomorphic to the fundamental group of a finite graph of groups, where each vertex group is f.g. \mathbb{R}^{n-1} -free, and each edge group is cyclic.

However, the converse is not true.

Corollary A f.g. \mathbb{R}^n -free group is hyperbolic relative to abelian subgroups.

Notice, that \mathbb{Z}^n -free groups are \mathbb{R}^n -free.

- 4 同 ト 4 目 ト 4 目 ト

Actions on \mathbb{R}^n -trees

Theorem [Guirardel, 2003]

A f.g. freely indecomposable \mathbb{R}^{n} -free group is isomorphic to the fundamental group of a finite graph of groups, where each vertex group is f.g. \mathbb{R}^{n-1} -free, and each edge group is cyclic.

However, the converse is not true.

Corollary A f.g. \mathbb{R}^n -free group is hyperbolic relative to abelian subgroups.

Notice, that \mathbb{Z}^n -free groups are \mathbb{R}^n -free.

- 4 同 6 4 日 6 4 日 6

Actions on \mathbb{R}^n -trees

Theorem [Guirardel, 2003]

A f.g. freely indecomposable \mathbb{R}^{n} -free group is isomorphic to the fundamental group of a finite graph of groups, where each vertex group is f.g. \mathbb{R}^{n-1} -free, and each edge group is cyclic.

However, the converse is not true.

Corollary A f.g. \mathbb{R}^n -free group is hyperbolic relative to abelian subgroups.

Notice, that \mathbb{Z}^n -free groups are \mathbb{R}^n -free.

\mathbb{Z}^n -free groups

Theorem [Kharlampovich, Miasnikov, Remeslennikov, 96]

Finitely generated fully residually free groups are \mathbb{Z}^n -free.

Theorem [Martino and Rourke, 2005]

Let G_1 and G_2 be \mathbb{Z}^n -free groups. Then the amalgamated product $G_1 *_C G_2$ is \mathbb{Z}^m -free for some $m \in \mathbb{N}$, provided C is cyclic and maximal abelian in both factors.

< ロ > < 同 > < 三 > <

\mathbb{Z}^n -free groups

Theorem [Kharlampovich, Miasnikov, Remeslennikov, 96]

Finitely generated fully residually free groups are \mathbb{Z}^n -free.

Theorem [Martino and Rourke, 2005]

Let G_1 and G_2 be \mathbb{Z}^n -free groups. Then the amalgamated product $G_1 *_C G_2$ is \mathbb{Z}^m -free for some $m \in \mathbb{N}$, provided C is cyclic and maximal abelian in both factors.

|▲同 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Examples of \mathbb{Z}^n -free groups:

\mathbb{R} -free groups,

 $\langle x_1, x_2, x_3 | x_1^2 x_2^2 x_3^2 = 1 \rangle$ is \mathbb{Z}^2 -free (but is neither \mathbb{R} -free, nor fully residually free).

- 4 同 ト 4 目 ト 4 目 ト

Examples of \mathbb{Z}^n -free groups:

 \mathbb{R} -free groups,

 $\langle x_1, x_2, x_3 | x_1^2 x_2^2 x_3^2 = 1 \rangle$ is \mathbb{Z}^2 -free (but is neither \mathbb{R} -free, nor fully residually free).

Olga Kharlampovich (McGill University) Group acting on A trees

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Examples of \mathbb{Z}^n -free groups:

 \mathbb{R} -free groups,

 $\langle x_1, x_2, x_3 | x_1^2 x_2^2 x_3^2 = 1 \rangle$ is \mathbb{Z}^2 -free (but is neither \mathbb{R} -free, nor fully residually free).

Olga Kharlampovich (McGill University) Group acting on A trees

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 4 同 6 4 日 6 4 日 6

From actions to length functions

Let G be a group acting on a Λ -tree (X, d). Fix a point $x_0 \in X$ and consider a function $I : G \to \Lambda$ defined by

$$l(g)=d(x_0 \ , \ gx_0)$$

I is called a based length function on G with respect to x_0 , or a Lyndon length function.

I is free if the underlying action is free.

Example. In a free group *F*, the function $f \rightarrow |f|$ is a free \mathbb{Z} -valued (Lyndon) length function.

Regular action

Definition

Let G act on a Λ -tree Γ . The action is regular with respect to $x \in \Gamma$ if for any $g, h \in G$ there exists $f \in G$ such that $[x, fx] = [x, gx] \cap [x, hx]$. We say that G is complete.

Comments

Let G act on a Λ -tree (Γ, d) . Then the action of G is regular with respect to $x \in \Gamma$ if and only if the length function $l_x : G \to \Lambda$ based at x is regular.

Let G act minimally on a Λ -tree Γ . If the action of G is regular with respect to $x \in \Gamma$ then all branch points of Γ are G-equivalent. Let G act on a Λ -tree Γ . If the action of G is regular with respect to $x \in \Gamma$ then it is regular with respect to any $y \in Gx$.

(日) (同) (日) (日) (日)

э

Regular action

Definition

Let G act on a Λ -tree Γ . The action is regular with respect to $x \in \Gamma$ if for any $g, h \in G$ there exists $f \in G$ such that $[x, fx] = [x, gx] \cap [x, hx]$. We say that G is complete.

Comments

Let G act on a Λ -tree (Γ, d) . Then the action of G is regular with respect to $x \in \Gamma$ if and only if the length function $l_x : G \to \Lambda$ based at x is regular.

Let G act minimally on a Λ -tree Γ . If the action of G is regular with respect to $x \in \Gamma$ then all branch points of Γ are G-equivalent. Let G act on a Λ -tree Γ . If the action of G is regular with respect to $x \in \Gamma$ then it is regular with respect to any $y \in Gx$.

| 4 同 🕨 🔺 🚍 🕨 🤘

Main Theorems

Theorem

[KMS] Any f.p. complete Λ -free group G can be represented as a union of a finite series of groups

$$G_1 < G_2 < \cdots < G_n = G,$$

where

- G_1 is a free group,
- G_{i+1} is obtained from G_i by finitely many HNN-extensions in which associated subgroups are maximal abelian and length isomorphic as subgroups of Λ.

Lyndon length functions

▲□ ► ▲ □ ► ▲

Main Theorems

Theorem

[KMS] Any finitely presented Λ -free group \tilde{G} is \mathbb{R}^n -free, where \mathbb{R}^n is ordered lexicographically for an appropriate $n \in \mathbb{N}$.

Theorem

[KMS] Any finitely presented group Λ -free group \tilde{G} can be isometrically embedded into a finitely presented complete Λ -free group G. Moreover G is also complete \mathbb{R}^n -free.

Lyndon length functions

| 4 同 🕨 🔺 🚍 🕨 🤘

Main Theorems

Theorem

[KMS] Any finitely presented Λ -free group \tilde{G} is \mathbb{R}^n -free, where \mathbb{R}^n is ordered lexicographically for an appropriate $n \in \mathbb{N}$.

Theorem

[KMS] Any finitely presented group Λ -free group \tilde{G} can be isometrically embedded into a finitely presented complete Λ -free group G. Moreover G is also complete \mathbb{R}^n -free.

Length functions

Length functions were introduced by Lyndon (1963).

Let G be a group. A function $I : G \to \Lambda$ is called a length function on G if

(L1) $\forall g \in G : l(g) \ge 0$ and l(1) = 0, (L2) $\forall g \in G : l(g) = l(g^{-1})$, (L3) the triple $\{c(g, f), c(g, h), c(f, h)\}$ is isosceles for all $g, f, h \in G$, where c(f, g) is the Gromov's product:

$$c(g, f) = \frac{1}{2}(I(g) + I(f) - I(g^{-1}f)).$$

 $\{a, b, c\}$ is isosceles = at least two of a, b, c are equal, and not greater than the third.

イロト イポト イヨト イヨト

Length functions

Length functions were introduced by Lyndon (1963).

Let G be a group. A function $I : G \to \Lambda$ is called a length function on G if

(L1) $\forall g \in G : l(g) \ge 0$ and l(1) = 0, (L2) $\forall g \in G : l(g) = l(g^{-1})$, (L3) the triple $\{c(g, f), c(g, h), c(f, h)\}$ is isosceles for all $g, f, h \in G$, where c(f, g) is the Gromov's product:

$$c(g, f) = \frac{1}{2}(l(g) + l(f) - l(g^{-1}f)).$$

 $\{a, b, c\}$ is isosceles = at least two of a, b, c are equal, and not greater than the third.

イロト イポト イヨト イヨト

Length functions

Length functions were introduced by Lyndon (1963).

Let G be a group. A function $I : G \to \Lambda$ is called a length function on G if

(L1) $\forall g \in G : l(g) \ge 0$ and l(1) = 0, (L2) $\forall g \in G : l(g) = l(g^{-1})$, (L3) the triple $\{c(g, f), c(g, h), c(f, h)\}$ is isosceles for all $g, f, h \in G$, where c(f, g) is the Gromov's product:

$$c(g, f) = \frac{1}{2}(l(g) + l(f) - l(g^{-1}f)).$$

 $\{a, b, c\}$ is isosceles = at least two of a, b, c are equal, and not greater than the third.

・ロト ・得ト ・ヨト ・ヨト

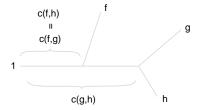
Lyndon length functions

(人間) ト く ヨ ト く ヨ ト

Examples of length functions

In a free group F, the function $f \to |f|$ is a \mathbb{Z} -valued length function.

For $f, g, h \in F$ we have



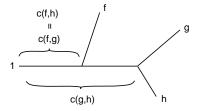
Lyndon length functions

(人間) ト く ヨ ト く ヨ ト

Examples of length functions

In a free group F, the function $f \rightarrow |f|$ is a \mathbb{Z} -valued length function.

For $f, g, h \in F$ we have



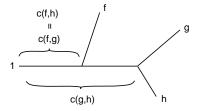
Lyndon length functions

(人間) ト く ヨ ト く ヨ ト

Examples of length functions

In a free group F, the function $f \rightarrow |f|$ is a \mathbb{Z} -valued length function.

For $f, g, h \in F$ we have



Lyndon length functions

э

Free length functions

A length function $I: G \to \Lambda$ is free if $I(g^2) > I(g)$ for every non-trivial $g \in G$.

Lyndon length functions

▲ 同 ▶ ▲ 三 ▶ ▲

Chiswell's Theorem

Theorem [Chiswell]

Let $L: G \to \Lambda$ be a Lyndon length function on a group G. Then there exists a Λ -tree $(X, d), x \in X$, and an isometric action of Gon X such that L(g) = d(x, gx) for all $g \in G$.

Notice that L(g) = d(x, gx) is free iff the action of G on X is free.

This gives another approach to free actions on Λ-trees.

Lyndon length functions

- (同) - (目) - (目)

Chiswell's Theorem

Theorem [Chiswell]

Let $L: G \to \Lambda$ be a Lyndon length function on a group G. Then there exists a Λ -tree (X, d), $x \in X$, and an isometric action of Gon X such that L(g) = d(x, gx) for all $g \in G$.

Notice that L(g) = d(x, gx) is free iff the action of G on X is free.

This gives another approach to free actions on Λ-trees.

Lyndon length functions

- 4 同 ト 4 目 ト 4 目 ト

Chiswell's Theorem

Theorem [Chiswell]

Let $L: G \to \Lambda$ be a Lyndon length function on a group G. Then there exists a Λ -tree (X, d), $x \in X$, and an isometric action of Gon X such that L(g) = d(x, gx) for all $g \in G$.

Notice that L(g) = d(x, gx) is free iff the action of G on X is free.

This gives another approach to free actions on Λ -trees.

Lyndon length functions

(人間) (人) (人) (人) (人) (人)

Chiswell's Theorem

Theorem [Chiswell]

Let $L: G \to \Lambda$ be a Lyndon length function on a group G. Then there exists a Λ -tree (X, d), $x \in X$, and an isometric action of Gon X such that L(g) = d(x, gx) for all $g \in G$.

Notice that L(g) = d(x, gx) is free iff the action of G on X is free.

This gives another approach to free actions on Λ -trees.

イロト イポト イヨト イヨト

Infinite words

Let Λ be a discretely ordered abelian group with a minimal positive element 1_{Λ} and $X = \{x_i \mid i \in I\}$ be a set.

An Λ -word is a function

$$w: [1_{\Lambda}, \alpha] \to X^{\pm}, \ \alpha \in \Lambda.$$

 $|w| = \alpha$ is called the length of w.

w is **reduced** \iff no subwords xx^{-1} , $x^{-1}x$ ($x \in X$).

 $R(\Lambda, X) =$ the set of all reduced Λ -words.

< ロ > < 同 > < 回 > < 回 > .

Infinite words

Let Λ be a discretely ordered abelian group with a minimal positive element 1_{Λ} and $X = \{x_i \mid i \in I\}$ be a set.

An Λ -word is a function

$$w: [1_{\Lambda}, \alpha] \to X^{\pm}, \ \alpha \in \Lambda.$$

 $|w| = \alpha$ is called the length of w.

w is **reduced** \iff no subwords xx^{-1} , $x^{-1}x$ ($x \in X$).

 $R(\Lambda, X) =$ the set of all reduced Λ -words.

< ロ > < 同 > < 三 > < 三 > 、

Infinite words

Let Λ be a discretely ordered abelian group with a minimal positive element 1_{Λ} and $X = \{x_i \mid i \in I\}$ be a set.

An Λ -word is a function

$$w: [1_{\Lambda}, \alpha] \to X^{\pm}, \ \alpha \in \Lambda.$$

 $|w| = \alpha$ is called the length of w.

w is **reduced** \iff no subwords xx^{-1} , $x^{-1}x$ ($x \in X$).

 $R(\Lambda, X) =$ the set of all reduced Λ -words.

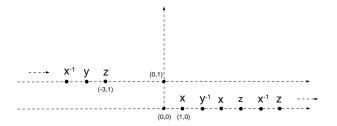
Partial group Non-Archimedean words and free actions Regular actions

・ロト ・四ト ・ヨト ・ヨト

æ

Example.

Let
$$X = \{x, y, z\}, \Lambda = \mathbb{Z}^2$$



In "linear" notation

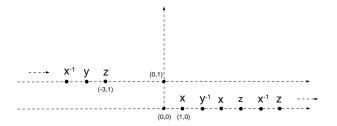
Partial group Non-Archimedean words and free actions Regular actions

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

Example.

Let
$$X = \{x, y, z\}, \Lambda = \mathbb{Z}^2$$



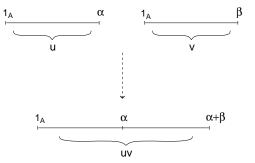
In "linear" notation

Partial group Non-Archimedean words and free actions Regular actions

э

(日) (同) (三) (三)

Concatenation of Λ -words:



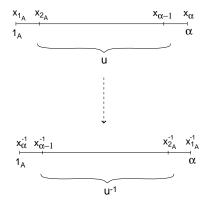
We write $u \circ v$ instead of uv in the case when uv is reduced.

Partial group Non-Archimedean words and free actions Regular actions

<ロ> <同> <同> < 同> < 同>

æ

Inversion of A-words:

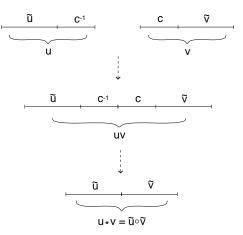


Partial group Non-Archimedean words and free actions Regular actions

<ロ> <同> <同> < 同> < 同>

æ

Multiplication of Λ -words:



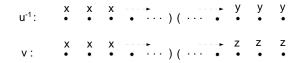
Partial group Non-Archimedean words and free actions Regular actions

イロト イポト イヨト イヨト

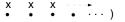
The partial group $R(\Lambda, X)$

The multiplication on $R(\Lambda, X)$ is partial, it is not everywhere defined!

Example. $u, v \in R(\mathbb{Z}^2, X)$



Hence, the common initial part of u^{-1} and v is



Partial group Non-Archimedean words and free actions Regular actions

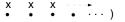
イロン 不同 とくほう イロン

The partial group $R(\Lambda, X)$

The multiplication on $R(\Lambda, X)$ is partial, it is not everywhere defined!

Example. $u, v \in R(\mathbb{Z}^2, X)$

Hence, the common initial part of u^{-1} and v is



Partial group Non-Archimedean words and free actions Regular actions

< ロ > < 同 > < 回 > < 回 > < □ > <

The partial group $R(\Lambda, X)$

The multiplication on $R(\Lambda, X)$ is partial, it is not everywhere defined!

Example. $u, v \in R(\mathbb{Z}^2, X)$

Hence, the common initial part of u^{-1} and v is

 $\begin{array}{cccc} X & X & X & ---- \\ \bullet & \bullet & \bullet & \bullet & \cdot \\ \end{array}$

Partial group Non-Archimedean words and free actions Regular actions

Cyclic decompositions

 $v \in R(\Lambda, X)$ is cyclically reduced if $v(1_A)^{-1} \neq v(|v|)$.

 $v \in R(\Lambda, X)$ admits a **cyclic decomposition** if

 $v=c^{-1}\circ u\circ c,$

where $c, u \in R(A, \Lambda)$ and u is cyclically reduced.

Denote by $CDR(A, \Lambda)$ the set of all words from $R(\Lambda, X)$ which admit a cyclic decomposition.

Partial group Non-Archimedean words and free actions Regular actions

イロト イポト イヨト イヨト

Cyclic decompositions

 $v \in R(\Lambda, X)$ is cyclically reduced if $v(1_A)^{-1} \neq v(|v|)$.

 $v \in R(\Lambda, X)$ admits a cyclic decomposition if

$$v=c^{-1}\circ u\circ c,$$

where $c, u \in R(A, \Lambda)$ and u is cyclically reduced.

Denote by $CDR(A, \Lambda)$ the set of all words from $R(\Lambda, X)$ which admit a cyclic decomposition.

Partial group Non-Archimedean words and free actions Regular actions

・ロット 全部 マイヨット キョン

Cyclic decompositions

 $v \in R(\Lambda, X)$ is cyclically reduced if $v(1_A)^{-1} \neq v(|v|)$.

 $v \in R(\Lambda, X)$ admits a cyclic decomposition if

$$v=c^{-1}\circ u\circ c,$$

where $c, u \in R(A, \Lambda)$ and u is cyclically reduced.

Denote by $CDR(A, \Lambda)$ the set of all words from $R(\Lambda, X)$ which admit a cyclic decomposition.

(日) (同) (三) (三)

From Non-Archimedean words - to length functions

Theorem [Myasnikov-Remeslennikov-Serbin, 2003]

Let Λ be a discretely ordered abelian group and X a set. If G is a subgroup of $CDR(\Lambda, X)$ then the function $L_G : G \to \Lambda$, defined by $L_G(g) = |g|$, is a free Lyndon length function.

Corollary. To show that a group G acts on a Λ -tree - embed G into $CDR(\Lambda, X)$.

- 4 同 6 4 日 6 4 日 6

From Non-Archimedean words - to length functions

Theorem [Myasnikov-Remeslennikov-Serbin, 2003]

Let Λ be a discretely ordered abelian group and X a set. If G is a subgroup of $CDR(\Lambda, X)$ then the function $L_G : G \to \Lambda$, defined by $L_G(g) = |g|$, is a free Lyndon length function.

Corollary.

To show that a group G acts on a Λ -tree - embed G into $CDR(\Lambda, X)$.

- 4 同 6 4 日 6 4 日 6

From Non-Archimedean words - to length functions

Theorem [Myasnikov-Remeslennikov-Serbin, 2003]

Let Λ be a discretely ordered abelian group and X a set. If G is a subgroup of $CDR(\Lambda, X)$ then the function $L_G : G \to \Lambda$, defined by $L_G(g) = |g|$, is a free Lyndon length function.

Corollary.

To show that a group G acts on a Λ -tree - embed G into $CDR(\Lambda, X)$.

イロト イポト イヨト イヨト

From Length functions - to Non-Archimedean words

Theorem [Chiswell], 2004

Let Λ be a discretely ordered abelian group. If $L : G \to \Lambda$ is a free Lyndon length function on a group G then there exists an embedding $\phi : G \to CDR(\Lambda, X)$ such that $|\phi(g)| = L(g)$ for every $g \in G$.

Corollary. Let Λ be an arbitrary ordered abelian group. If $L : G \to \Lambda$ is a free Lyndon length function on a group G then there exists a length preserving embedding $\phi : G \to CDR(\Lambda', X)$, where $\Lambda' = \Lambda \oplus \mathbb{Z}$ with the lex order.

イロト イポト イヨト イヨト

From Length functions - to Non-Archimedean words

Theorem [Chiswell], 2004

Let Λ be a discretely ordered abelian group. If $L : G \to \Lambda$ is a free Lyndon length function on a group G then there exists an embedding $\phi : G \to CDR(\Lambda, X)$ such that $|\phi(g)| = L(g)$ for every $g \in G$.

Corollary. Let Λ be an arbitrary ordered abelian group. If $L: G \to \Lambda$ is a free Lyndon length function on a group G then there exists a length preserving embedding $\phi: G \to CDR(\Lambda', X)$, where $\Lambda' = \Lambda \oplus \mathbb{Z}$ with the lex order.

・ 同 ト ・ 三 ト ・

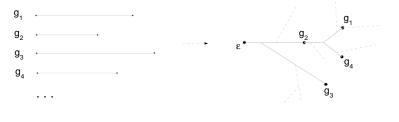
From Non-Archimedean words - to free actions

Infinite words \implies Length functions \implies Free actions

Shortcut

If $G \hookrightarrow CDR(\Lambda, X)$ then G acts by isometries on the canonical Λ -tree $\Gamma(G)$ labeled by letters from X^{\pm} .

 $\mathsf{G} = \{\mathsf{g}_1,\,\mathsf{g}_2,\,\mathsf{g}_3,\,\mathsf{g}_4,\,\dots\,\}$



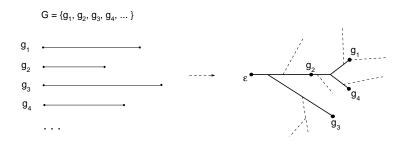
(人間) ト く ヨ ト く ヨ ト

From Non-Archimedean words - to free actions

Infinite words \implies Length functions \implies Free actions

Shortcut

If $G \hookrightarrow CDR(\Lambda, X)$ then G acts by isometries on the canonical Λ -tree $\Gamma(G)$ labeled by letters from X^{\pm} .



Partial group Non-Archimedean words and free actions Regular actions

(a)

э

Regular free actions

A length function $I : G \rightarrow A$ is called *regular* if it satisfies the *regularity* axiom:

(L6)
$$\forall g, f \in G, \exists u, g_1, f_1 \in G :$$

 $g = u \circ g_1 \& f = u \circ f_1 \& l(u) = c(g, f).$

Complete subgroups

Let $G \leq CDR(\Lambda, X)$ be a group of infinite words.

Complete subgroups

 $G \leq CDR(\Lambda, X)$ is complete if G contains the common initial segment c(g, h) for every pair of elements $g, h \in G$.

Regular length functions

A Lyndon length function $L : G \to \Lambda$ is regular if there exists a length preserving embedding $G \to CDR(\Lambda, X)$ onto a complete subgroup.

イロト イポト イヨト イヨト

Complete subgroups

Let $G \leq CDR(\Lambda, X)$ be a group of infinite words.

Complete subgroups

 $G \leq CDR(\Lambda, X)$ is complete if G contains the common initial segment c(g, h) for every pair of elements $g, h \in G$.

Regular length functions

A Lyndon length function $L: G \to \Lambda$ is regular if there exists a length preserving embedding $G \to CDR(\Lambda, X)$ onto a complete subgroup.

イロト イポト イヨト イヨト

Complete subgroups

Let $G \leq CDR(\Lambda, X)$ be a group of infinite words.

Complete subgroups

 $G \leq CDR(\Lambda, X)$ is complete if G contains the common initial segment c(g, h) for every pair of elements $g, h \in G$.

Regular length functions

A Lyndon length function $L: G \to \Lambda$ is regular if there exists a length preserving embedding $G \to CDR(\Lambda, X)$ onto a complete subgroup.

Complete subgroups

Example. Let F(x, y) be a free group and $H = \langle x^2 y^2, xy \rangle$ be its subgroup.

F has natural free \mathbb{Z} -valued length function $I_F : f \to |f|$. Hence, I_F induces a length function I_H on *H*.

 I_F is regular, but I_H is not

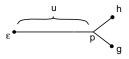
< ロ > < 同 > < 回 > < 回 > < 回 > <

Take
$$g = xy^{-1}x^{-2}$$
, $h = xy^{-1}x^{-1}y$ in F . Then
 $g, h \in H$, but $com(g, h) = xy^{-1}x^{-1} \notin H$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Branch points and completeness

A vertex $p \in \Gamma(G)$ is a branch point if it is the terminal endpoint of the common initial segment u = com(g, h) of $g, h \in G$.

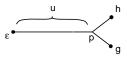


Completeness \implies all branch points are in one *G*-orbit of Γ

| 4 同 1 4 三 1 4 三 1

Branch points and completeness

A vertex $p \in \Gamma(G)$ is a branch point if it is the terminal endpoint of the common initial segment u = com(g, h) of $g, h \in G$.



Completeness \implies all branch points are in one *G*-orbit of Γ

Partial group Non-Archimedean words and free actions Regular actions

イロト イポト イヨト イヨト

Finitely Generated Groups

Chiswell, 2010

Every finitely generated $\Lambda\text{-free}$ group is a subgroup of a complete $\Lambda\text{-free}$ group.

Kharlampovich, Miasnikov, Serbin, 2010

Every finitely generated \mathbb{Z}^n -free group is a subgroup of a f.g. complete \mathbb{Z}^n -free group.

Conjecture

Every finitely generated complete Λ -free group is finitely presented.

Partial group Non-Archimedean words and free actions Regular actions

イロト イポト イヨト イヨト

Finitely Generated Groups

Chiswell, 2010

Every finitely generated $\Lambda\text{-free}$ group is a subgroup of a complete $\Lambda\text{-free}$ group.

Kharlampovich, Miasnikov, Serbin, 2010

Every finitely generated \mathbb{Z}^n -free group is a subgroup of a f.g. complete \mathbb{Z}^n -free group.

Conjecture

Every finitely generated complete Λ -free group is finitely presented.

Partial group Non-Archimedean words and free actions Regular actions

Finitely Generated Groups

Chiswell, 2010

Every finitely generated $\Lambda\text{-free}$ group is a subgroup of a complete $\Lambda\text{-free}$ group.

Kharlampovich, Miasnikov, Serbin, 2010

Every finitely generated \mathbb{Z}^n -free group is a subgroup of a f.g. complete \mathbb{Z}^n -free group.

Conjecture

Every finitely generated complete Λ -free group is finitely presented.

Partial group Non-Archimedean words and free actions Regular actions

▲□ ► ▲ □ ► ▲

The Main Conjecture.

Conjecture

Every finitely generated Λ -free group is \mathbb{Z}^n -free.

How probable it is?

Theorem [Kharlampovich, Myasnikov, Serbin]

Every finitely generated \mathbb{R} -free group is \mathbb{Z}^2 -free for some $m \ge n$.

Partial group Non-Archimedean words and free actions Regular actions

< ロ > < 同 > < 三 > <

The Main Conjecture.

Conjecture

Every finitely generated Λ -free group is \mathbb{Z}^n -free.

How probable it is?

Theorem [Kharlampovich, Myasnikov, Serbin]

Every finitely generated \mathbb{R} -free group is \mathbb{Z}^2 -free for some $m \ge n$.

Partial group Non-Archimedean words and free actions Regular actions

▲□ ► ▲ □ ► ▲

The Main Conjecture.

Conjecture

Every finitely generated Λ -free group is \mathbb{Z}^n -free.

How probable it is?

Theorem [Kharlampovich, Myasnikov, Serbin]

Every finitely generated \mathbb{R} -free group is \mathbb{Z}^2 -free for some $m \ge n$.

Partial group Non-Archimedean words and free actions Regular actions

A (10) × (10) × (10)

The Main Conjecture.

Conjecture

Every finitely generated Λ -free group is \mathbb{Z}^n -free.

How probable it is?

Theorem [Kharlampovich, Myasnikov, Serbin]

Every finitely generated \mathbb{R} -free group is \mathbb{Z}^2 -free for some $m \ge n$.

Elimination process

Elimination Process (EP) is a dynamical (rewriting) process of a certain type that transforms formal systems of equations in groups or semigroups (or band complexes, or foliated 2-complexes, or partial isometries of multi-intervals). Makanin (1982): Initial version of EP.

Makanin's EP gives a decision algorithm to verify consistency of a given system of equations - decidability of the Diophantine problem over free groups.

(日) (同) (三) (三)

Razborov's process

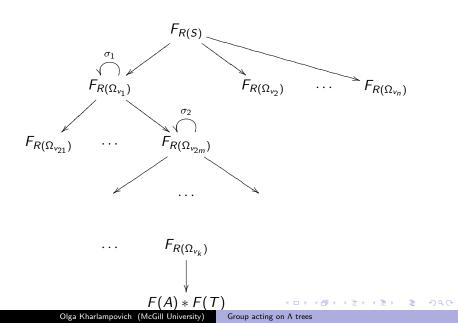
Razborov (1987): developed EP much further. Razborov's EP produces all solutions of a given system in *F*. The *coordinate group* of S = 1: $F_{R(S)} = F(A \cup X)/Rad(S)$

(4月) イヨト イヨト

Razborov's process

Razborov (1987): developed EP much further. Razborov's EP produces **all solutions** of a given system in *F*. The *coordinate group* of S = 1: $F_{R(S)} = F(A \cup X)/Rad(S)$

(4月) イヨト イヨト



Kharlampovich - Myasnikov (1998):

Refined Razborov's process.

Effective description of solutions of equations in free (and fully residually free) groups in terms of very particular **triangular systems** of equations.

Resembles the classical elimination theory for polynomials.

(4月) (4日) (4日)

Elimination process and splittings

A **splitting** of G is a representation of G as the fundamental groups of a graph of groups.

A splitting is **cyclic (abelian)** if all the edge groups are cyclic (abelian).

Elementary splittings:

$$G = A *_C B$$
, $G = A *_C = \langle A, t \mid t^{-1}Ct = C' \rangle$,

Free splittings:

G = A * B

Elimination processes and free actions

Infinite branches of an elimination process correspond precisely to the standard types of free actions: linear case ⇔ thin (or Levitt) type the quadratic case ⇔ surface type (or interval exchange), periodic structures ⇔ toral (or axial) type.

Bestvina-Feighn's elimination process

A powerful variation of the Makanin-Razborov's process for $\mathbb{R}\text{-}\mathsf{actions.}$

Can be viewed as an asymptotic (limit) version of MR process. Much simpler in applications but not algorithmic.

KM elimination process for \mathbb{Z}^n actions

To solve equations in fully residually free groups we designed a variation of the elimination process for \mathbb{Z}^n actions.

It **effectively** describes solution sets of finite systems of equations in \mathbb{Z}^n -groups in terms of **Triangular quasi-quadratic systems** (as in the case of fully residually free groups).

• • = • • = •

Non-standard version of Rip's machine

Kh., **Myasnikov**, and **Serbin** designed an elimination process for arbitrary non-Archimedean actions, i.e, free actions on Λ-trees.

This can be viewed as a **non-Archimedean (non-standard)** discrete, effective version of the original MR process.

Sketch of the proof of the theorem about Λ -free f.p. groups

Let G have a regular free length function in Λ .

Fix an embedding of G into $CDR(\Lambda, X)$ and construct a cancellation tree for each relation of G.

同 ト イ ヨ ト イ ヨ ト

Sketch of the proof

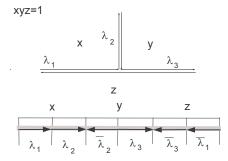


Figure: From the cancellation tree for the relation xyz = 1 to the generalized equation $(x = \lambda_1 \circ \lambda_2, y = \lambda_2^{-1} \circ \lambda_3, z = \lambda_3^{-1} \circ \lambda_1^{-1})$.

(人間) ト く ヨ ト く ヨ ト

Sketch of the proof

Infinite branches of an elimination process correspond to abelian splittings of *G*:

linear case \iff splitting as a free product.

the quadratic case \iff QH-subgroup,

periodic structures \iff **abelian** vertex group or splitting as an HNN with abelian edge group.

After obtaining a splitting we apply EP to the vertex groups. We build the Delzant-Potyagailo hierarchy.

Sketch of the proof

A family C of subgroups of a torsion-free group G is called *elementary* if

- (a) ${\mathcal C}$ is closed under taking subgroups and conjugation,
- (b) every $C \in C$ is contained in a maximal subgroup $\overline{C} \in C$,
- (c) every $C \in C$ is small (does not contain F_2 as a subgroup),
- (d) all maximal subgroups from C are malnormal.

G admits a *hierarchy* over C if the process of decomposing *G* into an amalgamated product or an HNN-extension over a subgroup from C, then decomposing factors of *G* into amalgamated products and/or HNN-extensions over a subgroup from C etc. eventually stops.

Theorem (Delzant - Potyagailo (2001)). If G is a finitely presented group without 2-torsion and C is a family of elementary subgroups of G then G admits a hierarchy over C.

미 > 《圖 > 《콜 > 《콜 >

Olga Kharlampovich (McGill University) Group acting on A trees

Hyperbolic length functions Let G be a group, Λ an ordereg abelian group. A function $I : G \to \Lambda$ is called a δ -hyperbolic length function on G if

(L1)
$$\forall g \in G : l(g) \ge 0$$
 and $l(1) = 0$,
(L2) $\forall g \in G : l(g) = l(g^{-1})$,
(L3) $\forall g, h \in G : l(gh) \le l(g) + l(h)$,
(L4) $\forall f, g, h \in G : c(f, g) \ge min\{c(f, h), c(g, h)\} - \delta$, where $c(f, g)$ is the Gromov's product:

$$c(g, f) = \frac{1}{2}(l(g) + l(f) - l(g^{-1}f)).$$

< ロ > < 同 > < 三 > < 三 > 、

A δ -hyperbolic length function is called complete if $\forall g \in G$, and $\alpha \leq l(g)$ there is $u \in G$ such that $g = u \circ g_1$, where $l(u) = \alpha$.

Hyperbolic length functions Let G be a group, Λ an ordereg abelian group. A function $I : G \to \Lambda$ is called a δ -hyperbolic length function on G if

(L1)
$$\forall g \in G : l(g) \ge 0$$
 and $l(1) = 0$,
(L2) $\forall g \in G : l(g) = l(g^{-1})$,
(L3) $\forall g, h \in G : l(gh) \le l(g) + l(h)$,
(L4) $\forall f, g, h \in G : c(f, g) \ge min\{c(f, h), c(g, h)\} - \delta$, where $c(f, g)$ is the Gromov's product:

$$c(g, f) = \frac{1}{2}(l(g) + l(f) - l(g^{-1}f)).$$

A δ -hyperbolic length function is called complete if $\forall g \in G$, and $\alpha \leq l(g)$ there is $u \in G$ such that $g = u \circ g_1$, where $l(u) = \alpha$.

Hyperbolic length functions

Regular length functions

A length function $I : G \to \Lambda$ is regular if $\forall g, f \in G, \exists u, g_1, f_1 \in G :$

$$g = u \circ g_1 \& f = u \circ f_1 \& l(u) = c(g, f).$$

δ -Regular length functions

A length function $I : G \to \Lambda$ is δ -regular if $\forall g, f \in G, \exists u, v, g_1, f_1 \in G$:

 $g = u \circ g_1 \& f = v \circ f_1 \& l(u) = l(v) = c(g, f), l(u^{-1}v) \le 4\delta.$

イロト イポト イヨト イヨト

Hyperbolic length functions

Regular length functions

A length function $I : G \to \Lambda$ is regular if $\forall g, f \in G, \exists u, g_1, f_1 \in G :$

$$g = u \circ g_1 \& f = u \circ f_1 \& l(u) = c(g, f).$$

δ -Regular length functions

A length function $I : G \to \Lambda$ is δ -regular if $\forall g, f \in G, \exists u, v, g_1, f_1 \in G$:

$$g = u \circ g_1 \& f = v \circ f_1 \& l(u) = l(v) = c(g, f), l(u^{-1}v) \le 4\delta.$$

イロト イポト イヨト イヨト

Free hyperbolic length functions A δ -hyperbolic length function is called free (δ -free) if $\forall g \in G : g \neq 1 \rightarrow l(g^2) > l(g) \text{ (resp., } l(g^2) > l(g) - c(\delta)\text{).}$

- 4 同 6 4 日 6 4 日 6

Problem

Find the structure of f.g. groups with δ -hyperbolic, δ -regular, δ -free length function, in \mathbb{Z}^n , where $I(\delta)$ is in the smallest component of \mathbb{Z}^n .

A.P. Grecianu (McGill) obtained first results in this direction.