The Complexity of the Quasi-Isometry Relation for Finitely Generated Groups

Simon Thomas

Rutgers University

8th May 2011

う < ? < @ > < 目 >

Simon Thomas (Rutgers University)

49th Cornell Topology Festival

8th May 2011

Theorem

There does not exist an **Borel** choice of generators for each f.g. group which has the property that isomorphic groups are assigned isomorphic Cayley graphs.

Theorem

The quasi-isometry relation \approx_{Ql} on the space \mathcal{G}_{fg} of finitely generated groups is not smooth.

Conjecture

- The quasi-isometry relation ≈_{Ql} on G_{fg} is a universal
 K_σ equivalence relation.
- In particular, the problem of classifying f.g. groups up to quasi-isometry is strictly harder than that of classifying them up to isomorphism.

A slight digression: The HNN Embedding Theorem

Theorem (Higman-Neumann-Neumann 1949)

Every countable group G can be embedded into a 2-generator group.

Sketch Proof.

- Let $(g_n \mid n \in \mathbb{N})$ be a sequence of generators with $g_0 = 1$.
- Let \mathbb{F} be the free group on $\{a, b\}$ and let $G * \mathbb{F}$ be the free product.
- Then $\{ b^{-n}ab^n \mid n \in \mathbb{N} \}$ and $\{ g_n a^{-n}ba^n \mid n \in \mathbb{N} \}$ freely generate free subgroups of $G * \mathbb{F}$.
- Hence we can construct the HNN extension

$$G \hookrightarrow K_G = \langle G * \mathbb{F}, t | t^{-1} b^{-n} a b^n t = g_n a^{-n} b a^n \rangle$$

• Since $g_n \in \langle a, b, t \rangle$ and $t^{-1}at = b$, it follows that $K_G = \langle a, t \rangle$.

Observation

It is **reasonably clear** that the isomorphism type of the 2-generator group K_G usually depends upon both the generating set of G and the particular enumeration that is used.

Question

Does there exist a more uniform construction with the property that the isomorphism type of K_G only depends upon the isomorphism type of G?

Notation

 ${\cal G}$ and ${\cal G}_{\it fg}$ denotes the spaces of countable groups and f.g. groups.

Theorem

There does not exist a Borel map $G \mapsto K_G$ from \mathcal{G} to \mathcal{G}_{fg} such that for all $G, H \in \mathcal{G}$,

- $G \hookrightarrow K_G$; and
- if $G \cong H$, then $K_G \cong K_H$.

Theorem

- Suppose that G → K_G is any Borel map from G to G_{fg} such that G → K_G for all G ∈ G.
- Then there exists an uncountable Borel family *F* ⊆ *G* of pairwise isomorphic groups such that the groups { *K_G* | *G* ∈ *F* } are incomparable with respect with respect to embeddability.

Sketch proof.

Collapse the continuum \mathbb{R} to a countable set and then apply the Shoenfield Absoluteness Theorem.

Let G be a f.g. group and let $S \subseteq G \setminus \{1_G\}$ be a finite generating set. Then the Cayley graph Cay(G, S) is the graph with vertex set G and edge set

$${m E}=\{\{x,y\}\mid y=xs ext{ for some } s\in {m S}\cup {m S}^{-1}\}.$$

The corresponding word metric is denoted by d_S .

Main Theorem

There does not exist an **Borel** choice of generators for each f.g. group which has the property that isomorphic groups are assigned isomorphic Cayley graphs.

Question

Why is the Main Theorem "obviously true"?

Answer

Because the isomorphism problem for f.g. groups is much harder than that for Cayley graphs.

う∢⊙▲□▶▲≣▶

Let E, F be equivalence relations on the Polish spaces X, Y.

• $E \leq_B F$ if there exists a Borel map $\varphi : X \to Y$ such that

$$x E y \iff \varphi(x) F \varphi(y).$$

In this case, φ is called a Borel reduction from E to F.

- $E \sim_B F$ if both $E \leq_B F$ and $F \leq_B E$.
- $E <_B F$ if both $E \leq_B F$ and $E \nsim_B F$.

The equivalence relation E on the Polish space X is smooth if there exists a Borel map $\varphi : X \to \mathbb{N}^{\mathbb{N}}$ such that

$$x E y \iff \varphi(x) = \varphi(y).$$

Example

The classification problem for countable divisible abelian groups is smooth.

Nonexample

The classification problem for f.g. groups is not smooth.

うく (ショコート・) ヨー

Let C be the Polish space of graphs Γ with underlying set \mathbb{N} which satisfy the following conditions:

- Each vertex $v \in \Gamma$ has finite degree.
- Aut(Γ) acts transitively on Γ.

Observation

 $\ensuremath{\mathcal{C}}$ includes the Cayley graphs of f.g. groups.

Theorem (Folklore)

The isomorphism relation on C is smooth.

Borel homomorphisms

Definition

The Borel map $\varphi : X \to Y$ is a homomorphism from E to F if

$$x E y \Longrightarrow \varphi(x) F \varphi(y).$$

Main Theorem

If $\varphi : \langle \mathcal{G}_{fg}, \cong \rangle \rightarrow \langle \mathcal{C}, \cong \rangle$ is any Borel homomorphism, then there exist groups $G, H \in \mathcal{G}_{fg}$ such that:

•
$$\varphi(G) \cong \varphi(H).$$

• G and H don't have isomorphic Cayley graphs.

Heuristic Reason

Since $\cong_{\mathcal{G}_{fg}}$ is much more complex than $\cong_{\mathcal{C}}$, the map φ has a "large kernel" and so "too many" groups *G* will be mapped to a fixed graph Γ .

୬ ୯ ୯ ଏ 🗇 । ଏ 🖹

Borel homomorphisms

Definition

The Borel map $\varphi : X \to Y$ is a homomorphism from E to F if

$$x E y \Longrightarrow \varphi(x) F \varphi(y).$$

Main Theorem

If $\varphi : \langle \mathcal{G}_{fg}, \cong \rangle \rightarrow \langle \mathcal{C}, \cong \rangle$ is any Borel homomorphism, then there exist groups $G, H \in \mathcal{G}_{fg}$ such that:

•
$$\varphi(G) \cong \varphi(H)$$
.

G and H don't have isomorphic Cayley graphs.

Question

But how can we be sure that two f.g. groups don't have isomorphic Cayley graphs with respect to some finite generating sets?

Simon Thomas (Rutgers University)

49th Cornell Topology Festival

Main Theorem

If $\varphi : \langle \mathcal{G}_{fg}, \cong \rangle \to \langle \mathcal{C}, \cong \rangle$ is any Borel homomorphism, then there exist groups G, $H \in \mathcal{G}_{fg}$ such that:

•
$$\varphi(G) \cong \varphi(H).$$

• G and H are not quasi-isometric.

Remark

Of course, in order to prove this, we must actually show that there are "many such pairs".

A measure preserving action of a group \mathbb{G} on a probability space (X, ν) is ergodic if whenever $Y \subseteq X$ is a \mathbb{G} -invariant Borel subset, then $\nu(Y) = 0, 1$.

Remark

Equivalently, if $\psi : X \to \mathbb{N}^{\mathbb{N}}$ is a \mathbb{G} -invariant Borel function, then there exists a Borel subset $M \subseteq X$ with $\nu(M) = 1$ such that $\psi \upharpoonright M$ is a constant function.

Example

Let μ be the usual product probability measure on $2^{\mathbb{Z}}$ and consider the shift action of \mathbb{Z} on $2^{\mathbb{Z}} = \mathcal{P}(\mathbb{Z})$. Then μ is \mathbb{Z} -invariant and \mathbb{Z} acts ergodically on $(2^{\mathbb{Z}}, \mu)$.

シ < ? < @ ▶ < ≧ ▶

Some easy consequences

Definition

Let $E_{\mathbb{Z}}$ be the orbit equivalence relation for the action of \mathbb{Z} on $2^{\mathbb{Z}}$.

Remark

 $E_{\mathbb{Z}}$ is Borel bireducible with E_0 .

Proposition

If $\psi : \langle 2^{\mathbb{Z}}, E_{\mathbb{Z}} \rangle \to \langle \mathbb{N}^{\mathbb{N}}, = \rangle$ is a Borel homomorphism, then there exists a Borel subset $M \subseteq 2^{\mathbb{Z}}$ with $\mu(M) = 1$ such that $\psi \upharpoonright M$ is a constant function.

Corollary

If $\psi : \langle 2^{\mathbb{Z}}, E_{\mathbb{Z}} \rangle \to \langle C, \cong \rangle$ is a Borel homomorphism, then there exists a Borel subset $M \subseteq 2^{\mathbb{Z}}$ with $\mu(M) = 1$ such that ψ maps M into a single \cong -class.

Main Lemma

There exists a Borel homomorphism

$$egin{aligned} & heta: \langle \, \mathbf{2}^{\mathbb{Z}}, E_{\mathbb{Z}} \,
angle o \langle \, \mathcal{G}_{\mathit{fg}}, \cong \,
angle \ & T \mapsto G_T \end{aligned}$$

such that the set

 $\{\langle S, T \rangle \in 2^{\mathbb{Z}} \times 2^{\mathbb{Z}} \mid G_S, G_T \text{ are not quasi-isometric } \}$

has $(\mu \times \mu)$ -measure 1.

Proof of Main Theorem

- Suppose that $\varphi : \langle \mathcal{G}_{fg}, \cong \rangle \to \langle \mathcal{C}, \cong \rangle$ is a Borel homomorphism.
- Consider the composite Borel homomorphism

$$\psi: \langle \mathbf{2}^{\mathbb{Z}}, \mathbf{E}_{\mathbb{Z}} \rangle \xrightarrow{\theta} \langle \mathcal{G}_{\mathbf{fg}}, \cong \rangle \xrightarrow{\varphi} \langle \mathcal{C}, \cong \rangle.$$

- Then there exists a Borel subset M ⊆ 2^ℤ with μ(M) = 1 such that ψ maps M into a single ≅-class of graphs.
- Since the set

 $\{\langle S, T \rangle \in 2^{\mathbb{Z}} \times 2^{\mathbb{Z}} \mid G_S, G_T \text{ are not quasi-isometric } \}$

has $(\mu \times \mu)$ -measure 1, there exist $S, T \in M$ such that G_S, G_T are not quasi-isometric.

The quasi-isometry relation isn't smooth

- Suppose that $\varphi : \langle \mathcal{G}_{fg}, \approx_{QI} \rangle \to \langle \mathbb{N}^{\mathbb{N}}, = \rangle$ is a Borel reduction.
- Consider the composite Borel homomorphism

$$\psi: \langle \mathbf{2}^{\mathbb{Z}}, \mathbf{E}_{\mathbb{Z}} \rangle \xrightarrow{\theta} \langle \mathcal{G}_{fg}, \approx_{QI} \rangle \xrightarrow{\varphi} \langle \mathbb{N}^{\mathbb{N}}, = \rangle.$$

- Then there exists a Borel subset M ⊆ 2^ℤ with μ(M) = 1 such that ψ maps M into a single r ∈ N^ℕ.
- Since the set

 $\{\langle S, T \rangle \in 2^{\mathbb{Z}} \times 2^{\mathbb{Z}} \mid G_S, G_T \text{ are not quasi-isometric } \}$

has $(\mu \times \mu)$ -measure 1, there exist $S, T \in M$ such that G_S, G_T are not quasi-isometric, which is a contradiction.

Let \mathbb{F}_3 be the free group on $\{a, b, c\}$ and let $g \in Aut(\mathbb{F}_3)$ be the automorphism defined by:

$$g(a) = ab$$
 $g(b) = ab^2$ $g(c) = c$

Lemma

If $w = (ac)^{14}$, then the presentation $\langle a, b, c | g^n(w) \rangle_{n \in \mathbb{Z}}$ satisfies the C'(1/6) cancellation property.

Definition

Let $\theta : 2^{\mathbb{Z}} \to \mathcal{G}_{fg}$ be the Borel map defined by

$$S \stackrel{ heta}{\mapsto} G_S = \langle a, b, c \mid \mathcal{R}_S
angle, \quad ext{ where } \mathcal{R}_S = \{ \, g^s(w) \mid s \in S \, \}.$$

Lemma

If $S E_{\mathbb{Z}} T$, then $G_S \cong G_T$.

Proof.

- Suppose that T = n + S and consider $g^n \in Aut(\mathbb{F}_3)$.
- Clearly $g^n(\{g^s(w) \mid s \in S\}) = \{g^t(w) \mid t \in T\}.$
- Hence gⁿ induces an isomorphism from G_S = (a, b, c | R_S) onto G_T = (a, b, c | R_T).

Lemma

The "taut loops" in the Cayley graph of $G_S = \langle a, b, c | \mathcal{R}_S \rangle$ correspond precisely to the relators $\mathcal{R}_S = \{ g^s(w) | s \in S \}$.

Lemma

If G_S , G_T are quasi-isometric, then

 $\{ \operatorname{\mathsf{length}}(g^s(w)) \mid s \in S \} \equiv \{ \operatorname{\mathsf{length}}(g^t(w)) \mid t \in T \}$

Definition

If $D, E \subseteq \mathbb{N}^+$, then $D \equiv E$, if there exists $k \ge 1$ such that:

• For every $d \in D$, there exists $e \in E$ such that $d/k \le e \le kd$.

• For every $e \in E$, there exists $d \in D$ such that $e/k \le d \le ke$.

Combining ideas of Champetier and Bowditch

Corollary

The set { $\langle S, T \rangle \in 2^{\mathbb{Z}} \times 2^{\mathbb{Z}} | G_{S}, G_{T} \text{ are not quasi-isometric }$ has $(\mu \times \mu)$ -measure 1.

- It is easily seen that $\text{length}(g^{\ell}(w)) \approx 2^{|\ell|}$.
- For μ -a.e. $S \in 2^{\mathbb{Z}}$, for each $k \ge 1$, there exist infinitely many pairwise disjoint "double intervals" $D_n^k(S) \subseteq \mathbb{Z}$ with $|D_n^k(S)| = 4k + 2$ such that $D_n^k(S) \cap S = \emptyset$.
- Fix some such $S \in 2^{\mathbb{Z}}$.
- For μ -a.e. $T \in 2^{\mathbb{Z}}$, for each $k \ge 1$, there exist infinitely many n such that middle⁺ $(D_n^k(S)) \in T$.
- Clearly G_S , G_T are not quasi-isometric.

Theorem

The quasi-isometry relation \approx_{Ql} on the space \mathcal{G}_{fg} of f.g. groups is not smooth.

Conjecture

 The problem of classifying f.g. groups up to quasi-isometry is strictly harder than that of classifying them up to isomorphism.

• In particular, $E_{\mathbb{Z}} <_B \approx_{Ql}$.

Let $E_{\mathbb{F}_2}$ be the orbit equivalence relation for the shift action of \mathbb{F}_2 on $(2^{\mathbb{F}_2}, \nu)$, where ν is the usual product probability measure.

Proposition (Jones-Schmidt)

If $\psi : \langle 2^{\mathbb{F}_2}, E_{\mathbb{F}_2} \rangle \to \langle 2^{\mathbb{Z}}, E_{\mathbb{Z}} \rangle$ is a Borel homomorphism, then there exists a Borel subset $M \subseteq 2^{\mathbb{F}_2}$ with $\nu(M) = 1$ such that ψ maps M into a single $E_{\mathbb{Z}}$ -class.

Conjecture

There exists a Borel homomorphism

$$egin{aligned} & heta: \langle \mathbf{2}^{\mathbb{F}_2}, E_{\mathbb{F}_2}
angle o \langle \mathcal{G}_{\mathit{fg}}, \cong
angle \ & S \mapsto G_S \end{aligned}$$

such that the set

 $\{\langle S, T \rangle \in 2^{\mathbb{F}_2} \times 2^{\mathbb{F}_2} \mid G_S, G_T \text{ are not quasi-isometric } \}$

has $(\nu \times \nu)$ -measure 1.

Let \mathbb{F}_3 be the free group on $\{a, b, c\}$ and let $g, h \in Aut(\mathbb{F}_3)$ be the automorphisms defined by:

g(a) = ab	$h(a) = a^2 b a^3 b$
$g(b) = ab^2$	$h(b) = a^2 b$
g(c)=c	h(c) = c

Lemma (Magnus-Neumann)

 $F = \langle g, h \rangle$ is a free subgroup of Aut(\mathbb{F}_3).

Lemma

If $w = (ac)^{14}$, then the presentation $\langle a, b, c | \varphi(w) \rangle_{\varphi \in F}$ satisfies the C'(1/6) cancellation property.

• Consider the Borel homomorphism $2^F \to \mathcal{G}_{fg}$ defined by

 $S \mapsto G_S = \langle a, b, c \mid \mathcal{R}_S \rangle$, where $\mathcal{R}_S = \{ \varphi(w) \mid \varphi \in S \}$.

Conjecture

The set

 $Z = \{ \langle S, T \rangle \in 2^{F} \times 2^{F} \mid G_{S}, G_{T} \text{ are not quasi-isometric } \}$

has $(\nu \times \nu)$ -measure 1.

Simon Thomas (Rutgers University)

49th Cornell Topology Festival

クへで ∢ / ♪ ◆ ミ → 8th May 2011

Question (Universal group with respect to quasi-isometry?)

Does there exist a f.g. group G such that for every f.g. group K, there exists a f.g. group H such that $K \hookrightarrow H$ and $H \approx_{Ql} G$?

Question (Universal Cayley graph?)

Does there exist a fixed graph Γ such that for every f.g. group K, there exists a f.g. group H with generating set S such that $K \hookrightarrow H$ and $Cay(H, S) \cong \Gamma$?

Question (Universal locally compact group?)

Does there exist a locally compact second countable group \mathbb{G} such that every countable group K embeds into a cocompact lattice of \mathbb{G} ?