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Cayley graphs of finitely generated groups

Definition
Let G be a f.g. group and let S ⊆ G r {1G} be a finite generating set.
Then the Cayley graph Cay(G, S) is the graph with vertex set G and
edge set

E = {{x , y} | y = xs for some s ∈ S ∪ S−1}.

The corresponding word metric is denoted by dS.

For example, when G = Z and S = {1}, then the corresponding
Cayley graph is:
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But which Cayley graph?

However, when G = Z and S = {2, 3}, then the corresponding Cayley
graph is:
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Theorem (S.T.)
There does not exist an explicit choice of generators for each
f.g. group which has the property that isomorphic groups are
assigned isomorphic Cayley graphs.
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The basic idea of geometric group theory

Although the Cayley graphs of a f.g. group G with respect to different
generating sets S are usually nonisomorphic, they always have the
same large scale geometry.
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The quasi-isometry relation

Definition (Gromov)
Let G, H be f.g. groups with word metrics dS, dT respectively. Then G,
H are said to be quasi-isometric, written G ≈QI H, if there exist

constants λ ≥ 1 and C ≥ 0, and
a map ϕ : G → H

such that for all x, y ∈ G,

1
λ

dS(x , y)− C ≤ dT (ϕ(x), ϕ(y)) ≤ λdS(x , y) + C;

and for all z ∈ H,
dT (z, ϕ[G]) ≤ C.
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When C = 0

Definition (Gromov)
Let G, H be f.g. groups with word metrics dS, dT respectively. Then G,
H are said to be Lipschitz equivalent if there exist

a constant λ ≥ 1, and
a map ϕ : G → H

such that for all x, y ∈ G,

1
λ

dS(x , y) ≤ dT (ϕ(x), ϕ(y)) ≤ λdS(x , y);

and for all z ∈ H,
dT (z, ϕ[G]) = 0.
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As expected ...

Observation
If S, S′ are finite generating sets for G, then

id : 〈G, dS〉 → 〈G, dS′〉

is a quasi-isometry.

Thus while it doesn’t make sense to talk about the isomorphism type
of “the Cayley graph of G”, it does make sense to talk about the
quasi-isometry type.
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A topological characterization

Theorem (Gromov)
If G, H are f.g. groups, then the following are equivalent.

G and H are quasi-isometric.
There exists a locally compact space X on which G, H have
commuting proper actions via homeomorphisms such that
X/G and X/H are both compact.

Definition
The action of the discrete group G on X is proper if for every compact
subset K ⊆ X, the set {g ∈ G | g(K ) ∩ K 6= ∅} is finite.
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Obviously quasi-isometric groups

Definition
Two groups G1, G2 are said to be virtually isomorphic, written
G1 ≈VI G2, if there exist subgroups Ni 6 Hi 6 Gi such that:

[G1 : H1], [G2 : H2] < ∞.
N1, N2 are finite normal subgroups of H1, H2 respectively.
H1/N1

∼= H2/N2.

Proposition (Folklore)
If the f.g. groups G1, G2 are virtually isomorphic, then G1, G2 are
quasi-isometric.
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Obviously quasi-isometric groups

Observation
If the f.g. groups G1, G2 have isomorphic Cayley graphs with respect
to suitable generating sets, then G1, G2 are quasi-isometric.

Example (Erschler)
The f.g. groups Alt(5) wr Z and C60 wr Z have isomorphic Cayley
graphs but are not virtually isomorphic.

Remark
The quasi-isometry relation is strictly coarser than the transitive
closure of the above “obvious quasi-isometries”.

Question
How many f.g. groups up to quasi-isometry?
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Growth rates and quasi-isometric groups

Theorem (Grigorchuk 1984 - Bowditch 1998)

There are 2ℵ0 f.g. groups up to quasi-isometry.

Proof (Grigorchuk).
Consider the growth rate of the size of balls of radius n in the Cayley
graphs of suitably chosen groups.

Proof (Bowditch).
Consider the growth rate of the length of “irreducible loops” in the
Cayley graphs of suitably chosen groups.
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The complexity of the quasi-isometry relation

Question
What are the possible complete invariants for the quasi-isometry
problem for f.g. groups?

Question
Is the quasi-isometry problem for f.g. groups strictly harder than the
isomorphism problem?
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An explicit reduction

Let S be a fixed infinite f.g. simple group. Then the isomorphism
problem for f.g. groups can be reduced to the virtual isomorphism
problem via the explicit map

G 7→ (Alt(5) wr G ) wr S

in the sense that

G ∼= H ⇐⇒ (Alt(5) wr G ) wr S ≈VI (Alt(5) wr H ) wr S.

Two Open Questions
Does there exist an explicit reduction from the isomorphism
problem to the quasi-isometry problem?
Does there exist an explicit reduction from the quasi-isometry
problem to the isomorphism problem?
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What is an explicit map?

Question
Which functions f : R → R are explicit?

An Analogue of Church’s Thesis
EXPLICIT = BOREL

A function f : R → R is Borel if graph(f ) is a Borel subset of R×R.
Equivalently, f−1(A) is Borel for each Borel subset A ⊆ R.
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Polish spaces

Definition
A Polish space is a separable completely metrizable
topological space.
E.g. R, [0, 1], Qp, 2N, NN,...

Some less obvious examples
The space of countable graphs
The space of finitely generated groups
etc etc
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The Polish space of countable graphs

Let C be the set of graphs of the form Γ = 〈N, E 〉.

Identify each graph Γ ∈ C with its edge relation E ⊆ N× N.

Next identify E with the corresponding characteristic function
so that E ∈ 2N×N.

Then C is a closed subset of the Polish space 2N×N and hence
is also a Polish space.

For later use, note that the isomorphism relation on C is the
orbit equivalence relation of the natural action of Sym(N) on C.

Simon Thomas (Rutgers University) 49th Cornell Topology Festival 7th May 2011



The Polish space of f.g. groups

A marked group (G, s̄) consists of a f.g. group with a distinguished
sequence s̄ = (s1, · · · , sm) of generators.

For each m ≥ 1, let Gm be the set of isomorphism types of marked
groups (G, (s1, · · · , sm)) with m distinguished generators.

Then there exists a canonical embedding Gm ↪→ Gm+1 defined by

(G, (s1, · · · , sm)) 7→ (G, (s1, · · · , sm, 1G)).

And G =
⋃
Gm is the space of f.g. groups.
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The Polish space of f.g. groups

Let (G, s̄) ∈ Gm and let dS be the corresponding word metric. For
each ` ≥ 1, let

B`(G, s̄) = {g ∈ G | dS(g, 1G) ≤ `}.

The basic open neighborhoods of (G, s̄) in Gm are given by

U(G,s̄),` = { (H, t̄) ∈ Gm | B`(H, t̄) ∼= B`(G, s̄) }, ` ≥ 1.

Example
For each n ≥ 1, let Cn = 〈gn〉 be cyclic or order n. Then:

lim
n→∞

(Cn, gn) = (Z, 1).
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A slight digression ...

Some Isolated Points
Finite groups
Finitely presented simple groups

The Next Stage
SL3(Z)

Question (Grigorchuk)
What is the Cantor-Bendixson rank of G?
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Borel reductions

Definition
Let E, F be equivalence relations on the Polish spaces X, Y .

E ≤B F if there exists a Borel map ϕ : X → Y such that

x E y ⇐⇒ ϕ(x) F ϕ(y).

In this case, f is called a Borel reduction from E to F.
E ∼B F if both E ≤B F and F ≤B E.
E <B F if both E ≤B F and E �B F.
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Borel equivalence relations

Definition
An equivalence relation E on a Polish space X is Borel if E is a Borel
subset of X × X.

Some Examples
The following are Borel equivalence relations on the space G of finitely
generated groups:

the isomorphism relation ∼=
the virtual isomorphism relation ≈VI

the quasi-isometry relation ≈QI

Simon Thomas (Rutgers University) 49th Cornell Topology Festival 7th May 2011



The Isomorphism Relation

Definition
A Borel equivalence relation E is countable if every E-class is
countable.

Observation
The isomorphism relation ∼= is a countable Borel equivalence relation.

Proof.
There are only countable many ways to realize a f.g. group G as a
marked group (G, s̄).
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Countable Borel equivalence relations

x
xE0

id2N = smooth

E∞ = universalx
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Countable Borel equivalence relations

x
xE0

id2N = smooth

E∞ = universalx
Definition (HKL)
E0 is the equivalence relation of
eventual equality on the space 2N

of infinite binary sequences.
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Countable Borel equivalence relations

x
xE0

id2N = smooth

E∞ = universalx
Definition (HKL)
E0 is the equivalence relation of
eventual equality on the space 2N

of infinite binary sequences.

Definition (DJK)
A countable Borel equivalence
relation E is universal if F ≤B E for
every countable Borel equivalence
relation F .
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Countable Borel equivalence relations

x
xE0

id2N = smooth

E∞ = universalx

Uncountably
many

relations

Definition (HKL)
E0 is the equivalence relation of
eventual equality on the space 2N

of infinite binary sequences.

Definition (DJK)
A countable Borel equivalence
relation E is universal if F ≤B E for
every countable Borel equivalence
relation F .

Question
Where does ∼= fit in?
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Countable Borel equivalence relations

x
xE0

id2N = smooth

E∞ = universalx

Uncountably
many

relations

Confirming a conjecture of
Hjorth-Kechris ...

Theorem (S.T.-Velickovic)
∼= is a universal countable Borel
equivalence relation.
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The Virtual Isomorphism Relation

Definition
The f.g. groups G1, G2 are virtually isomorphic, written G1 ≈VI G2,
if there exist subgroups Ni 6 Hi 6 Gi such that:

[G1 : H1], [G2 : H2] < ∞.
N1, N2 are finite normal subgroups of H1, H2 respectively.
H1/N1

∼= H2/N2.

Theorem (S.T.)
The virtual isomorphism problem for f.g. groups is strictly harder than
the isomorphism problem.

Simon Thomas (Rutgers University) 49th Cornell Topology Festival 7th May 2011



A canonical obstruction

Definition
E1 is the Borel equivalence relation on [0, 1]N defined by

x E1 y ⇐⇒ x(n) = y(n) for almost all n.

Theorem (Kechris-Louveau)

If G is a Polish group and X is a Borel G-space, then E1 �B EX
G .

In particular, E1 doesn’t reduce to the isomorphism relation on
any class of countable structures.

Notation
Here EX

G is the corresponding orbit equivalence relation.

Theorem (S.T.)
E1 <B ≈VI .
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A slight digression ...

Observation
The abstract commensurability relation ≈C on the space G of f.g.
groups is countable Borel. And hence ≈C is Borel reducible to ∼=.

Open Problem
Find a “group-theoretic” reduction from ≈C to ∼=.

Theorem (S.T.)
There does not exist a Borel reduction ϕ from ≈C to ∼= such that
ϕ(G) ≈C G for all G ∈ G.

Conjecture
There does not exist a continuous reduction from ≈C to ∼=.
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Kσ equivalence relations

Definition
The equivalence relation E on the Polish space X is Kσ if E is the
union of countably many compact subsets of X × X.

Example
The following are Kσ equivalence relations on the space G of finitely
generated groups:

the isomorphism relation ∼=
the virtual isomorphism relation ≈VI

the quasi-isometry relation ≈QI
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Why is the quasi-isometry relation Kσ?

It is enough to show that each ≈QI � Gm is Kσ.

For each λ ≥ 1, C ≥ 0, let Rλ,C consist of the pairs

( ( G, s̄ ), ( H, t̄ ) ) ∈ Gm × Gm

such that there exists a (λ, C)-quasi-isometry ϕ : G → H.

If ( ( G, s̄ ), ( H, t̄ ) ) /∈ Rλ,C , then there exists an obstruction
in some balls B`( G, s̄ ), Bλ`+C( H, t̄ ) for some ` ≥ 1.

Thus Rλ,C is a closed subset of the compact Gm × Gm.
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Some universal Kσ equivalence relations

Theorem (Rosendal)
Let EKσ be the equivalence relation on

∏
n≥1{1, . . . , n } defined by

α EKσ β ⇐⇒ ∃N ∀k |α(k)− β(k)| ≤ N.

Then EKσ is a universal Kσ equivalence relation.

Theorem (Rosendal)
The Lipschitz equivalence relation on the space of compact separable
metric spaces is Borel bireducible with EKσ .
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More universal Kσ equivalence relations

Theorem (S.T.)
The following equivalence relations are Borel bireducible with EKσ

the growth rate relation on the space of strictly increasing
functions f : N → N;
the quasi-isometry relation on the space of connected
4-regular graphs.

Definition
The strictly increasing functions f , g : N → N have the same
growth rate, written f ≡ g, if there exists an integer t ≥ 1 such that

f (n) ≤ g(tn) for all n ≥ 1, and
g(n) ≤ f (tn) for all n ≥ 1.
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The quasi-isometry vs. virtual isomorphism problems

The Main Conjecture
The quasi-isometry problem for f.g. groups is universal Kσ.

Theorem (S.T.)
The virtual isomorphism problem for f.g. groups is not universal Kσ.

Corollary
The virtual isomorphism problem for f.g. groups is strictly easier than
the quasi-isometry relation for connected 4-regular graphs.
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Kσ equivalence relations
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Kσ equivalence relations
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Theorem (S.T.)
If E is turbulent, then E �B ≈VI .
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