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Social background

In July, 1925 on a train ride to Hannover, Born met Pauli, his former
assistant and invited him to join him in the further exploration of Born’s
finding (that Heisenberg’s peculiar multiplication rule was just matrix
multiplication). But Pauli refused, saying
“ You are fond of tedious formalism. You are only going to spoil
Heisenberg’s physical ideas by your futile mathematics.”
When Born got back to Göttingen he asked Jordan to work with him.
Within two months they laid the foundations of matrix mechanics.
(Z f. Phys. submitted September 27, 1925)
Their paper was based on analyzing harmonic oscillators.
In this lecture I’m going to describe the Hilbert state space for harmonic
oscillators et al.
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Classical harmonic oscillators. One oscillator

F = ma (1)

F = −ky (2)

−ky = mÿ (3)

ÿ = −ω2y , ω2 = k/m (4)

Potential energy: V (y) = (1/2)ω2y2 (5)

because

Force = −ω2y = −(d/dy)V (y) (6)

on the right side of (4).

Total energy: E = (1/2)v2 + V (y) (m = 1 always) (7)
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The configuration space is R because a point in R gives the instantaneous
position of the point mass.

Configuration space: C = R. (8)
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n harmonic oscillators

ÿ(t) = −A y(t), y(t) ∈ Rn, (9)

A > 0 symmetric, n × n matrix (10)

The natural frequencies are the eigenvalues of
√
A.

Total energy: (1/2)|ẏ |2 + (1/2)(Ay , y) (11)

Configuration space: C = Rn (12)
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The wave equation. Inifinitely many hmc. oscs.

The wave equation over R3 is

ϕ̈(x , t) = ∆ϕ(x , t), x ∈ R3, t ∈ R ϕ : R4 → R (13)

Classical mechanical rewrite: Let

C = Re L2(R3, dx), A = −∆ (14)

Then (13) can be written

ϕ̈(t) = −A ϕ(t), t ∈ R, ϕ(t) ∈ C (15)

This looks just like (9) with the configuration space C = Rn replaced by
our new (infinite dimensional) configuration space is

Configuration space: C = Re L2(R3, dx). (16)

Total energy: E = (1/2)‖ϕ̇‖2L2(R3) + (1/2)(−∆ϕ,ϕ) (17)
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Philosophical statement: The wave equation is just an assembly of
infinitely many harmonic oscillators.

Leonard Gross The ground state transformation in QFT



Summary of classical harmonic oscillators

One harmonic oscillator.

ÿ = −ω2y . C = R. (18)

n harmonic oscillators.

ÿ = −Ay , A > 0, C = Rn. (19)

The wave equation

ϕ̈(t) = ∆ϕ(t). C = Re L2(R3, dx). (20)
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How to quantize harmonic oscillators
Quantization

Step 1. Take configuration space C and replace its phase space T ∗(C) by
L2(C, µ), where µ is a wisely chosen measure. L2(C, µ) is the quantum
state space.

Step 1. REPLACE T ∗(C) by L2(C, µ) (21)

Step 2. Replace important functions on T ∗(C) (e.g. position, momentum,
energy) by corresponding important operators on L2(C, µ).

Step 2. REPLACE important functions on T ∗(C) (22)

by important operators on L2(C, µ) (23)
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Example: One harmonic oscillator

Since C = R we can take H = L2(R, dy). Important functions and
operators:

Important functions on T ∗(C) operators on L2(C)

Position y  multiplication by y on H
momentum p  id/dy on H

kinetic energy (1/2)p2  (1/2)(id/dy)2 = −(1/2)d2/dy2

Potential energy V (y) = (1/2)ω2y2  multiplication by V (y)

total energy (1/2)p2 + V (y) −(1/2)d2/dy2 + V (y)

From all this we only need, for today, the Hamiltonian operator

H = −(1/2)d2/dy2 + (1/2)ω2y2 acting in L2(R, dy) (24)
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Before going on to n harmonic oscillators let’s write this in a more
complicated form. Let

ψ(y) = (ω/π)1/4e−(1/2)ωy
2

(25)

Facts:

1. ‖ψ‖2L2(R) = 1 (26)

2. Hψ = (ω/2)ψ (27)

3. (ω/2) is the smallest eigenvalue of H (28)

Terminology: ψ is called the ground state. (Reasonable?)
Ground state transformation: Let

µ = ψ(y)2dy (29)

Then

µ(R) = 1 (30)

We are going to change from Hilbert state space L2(R, dy) to L2(R, µ).
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Since the isomorphisms of quantum mechanics are unitary operators on
Hilbert spaces this is legal as long as we implement the change by a
unitary operator. Define

(Uf )(y) = f (y)/ψ(y), y ∈ R (31)

Then

U : L2(R, dy)→ L2(R, µ) (32)

is unitary. (10 seconds to verify this.) Fact:

UHU−1 = (1/2)d∗d + (1/2)ω acting in L2(C, µ) (33)
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Digression on the definition of d∗d .

Let M be a Riemannian manifold and let µ be a smooth measure on M.
Then the adjoint of d is defined relative to this data by∫

M
〈df , α〉dµ =

∫
M
〈f , d∗α〉dµ (34)

Here f is a 0-form (function) and α is a 1-form.
If µ happens to be the Riemann-Lebesgue measure associated to the
Riemannian metric on M then d∗ is the usual coderivative. But for our
purposes µ will not be the Riemann-Lebesque measure.
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Who needs that constant?

So up to unitary equivalence we have

H = (1/2)d∗d + (1/2)ω IH acting on L2(C, µ) (35)

But since the potential energy and therefore total energy is defined only up
to a constant we can take the Hamiltonian to be simply

H = (1/2)d∗d acting in L2(C, µ), C = R (36)

without changing the physics.
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Example: n harmonic oscillators

We can take over the method from one harmonic oscillator easily. Here is
the result:

C = Rn (37)

ÿ = −Ay , A > 0 (38)

Define H = L2(Rn, µ) (39)

dµ(y) = C exp(−(
√
A y , y)Rn)dny (40)

And the Hamiltonian in the ground state representation is

H = (1/2)d∗d +
1

2
trace

√
A IH (41)

We could drop the last term if we wished because changing energy by an
additive constant doesn’t change the physics
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Wave equation

We need only parrot all the preceding computations and procedures.
Everything is the same except that Rn is now replaced by Re L2(R3, dx),
which is infinite dimensional. Here is the result. We can take the quantum
Hilbert space to be

H = L2(C, µ), C = Re L2(R3, dx) (42)

µ = const. exp(−
√

(−∆) ϕ,ϕ)C)Dϕ (43)

H = (1/2)d∗d +
1

2
trace

√
(−∆) IH (44)

As before we can drop the (now) infinite constant (1/2)trace(
√

(−∆)) to
find

H = (1/2)d∗d acting in L2(C, µ) (45)
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Drop infinite constant?

OK with you to drop the infinite constant? No? Let me read to you from
a QFT book.
(1962) “ We drop the infinite constant so that the no-particle state has
zero energy”

OK? No? Let me read to you from a more recent book.

(1965) “ This is the first of a number of divergences that we shall
encounter in field theory. It is the easiest one to remove simply by
subtracting off an infinite constant. This can be done because (...) only
energy differences have a physical meaning.”

OK? Still not OK? Let me read to you from an even more recent book.

(1979) ” This is an example of a spurious difficulty arising from too literal
an interpretation of the Correspondence Principle.”

OK? Good.
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Yang-Mills fields

The current view of classical fields in elementary particle theory is this.

1. A matter field is a section of a vector bundle over R4 (Minkowski
spacetime)

2. A force field is a connection on this vector bundle.
Let’s just focus on the force field.

Notation: K a compact Lie group. k = Lie(K ). K is to be determined by
experiment. For example K = SU(3)× SU(2)× U(1) is the currently
accepted “right” group.
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A connection is determined by an equivalence class of connection 1-forms
A(x , t) with values in k. Two such k valued 1-forms are equivalent if there
is a “gauge function” g : R4 → K such that Ag := g−1Ag + g−1dg is the
other 1-form. Time evolution of a gauge field (i.e. the analog of the wave
equation above) is

D∗AF = 0 (Yang-Mills hyperbolic equation) (46)

where F is the curvature of the connection form A and D∗A is the
coderivative of the gauge covariant exterior derivative DA. (The
Minkowski metric enters into the definition.)
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Quantization of Yang-Mills fields

As usual we need first to spell out what the configuration space is. Here it
is

C =
the set of all k-valued 1-forms on R3

the gauge group of R3
(47)

Semi-Theorem 1. There exists a finite measure µ on C and a unitary
representation U of the inhomogeneous Lorentz group L on L2(C, µ) such
that

(1/2)d∗d = idU(d/dt) (= iU∗(d/dt)). (48)

Moreover, for each closed curve C ⊂ R3, parallel transport around C

WC (A) := χ ◦ //AC (χ is any character of K ) (49)

defines a function on C such that {WC (·) : C ⊂ R3} is fundamental in
L2(C, µ).
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Proof of Semi-theorem 1

Proof is nowhere in sight.

Definition: Semi-theorem. A semi-theorem is a theorem whose statement
is at most half true and for which at most half of its proof exists.
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Final semi-theorem

Semi-Theorem 2 (reward for proof = $1M) Take

C =
{k valued connection forms on R3} × L2(R3; k)}

modulo gauge group
(50)

There exists a finite measure µ on C such that

inf spectrum (d∗d |1⊥) > 0. (51)

a. The measure µ should be the ground state measure for the Higg’s field
(whose configuration space is the second factor in (50)).

b. The Lorentz group should act unitarily, as usual and (1/2)d∗d should
be the infinitesimal generator of time translations.
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Pauli to Dirac, 1932

Lest you think that the discovery of QFT followed some kind of straight
and logical line, here is a letter from Pauli to Dirac (shortened by me) 1932

“Your recently published remarks in the Proc. of the Royal Society
concerning quantum electrodynamics was certainly no masterpiece. After
a confused introduction, that consisted of only half understandable
sentences, you come finally to results in a simplified one -dimensional
example that Heisenberg and I already found by our formalism This
stands in marked contrast with your assertion in your introduction that
your QED is better than ours.
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