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This is a report on the panel discussion of the 57th Topology Festival at Cornell University,
which ran from May 6 to May 8, 2022. Each of the speakers was given approximately 5
minutes to outline either a particularly interesting recent result, or an open problem in the
field. Summaries of their presentations follow.

Reported by: Isaac Goldberg, Nicki Magill, David Mehrle, Nikhil Sahoo, Kimball Strong,
Chase Vogeli.

Path Induction in Homotopy Type Theory
Emily Riehl, Johns Hopkins University

Homotopy type theory is an exciting new field that provides a collection of proof techniques
that hold in any ∞-topos. One of the surprising techniques is called path induction, which
is analogous to the induction principle for natural numbers.

For a space A and a point a ∈ A, we can form the based path space PaA by the pullback
diagram

PaA AI

1 A,

∼ ∼

which is contractible. The constant path is the basepoint of PaA, but in homotopy type
theory it goes by the name ‘refla’.

The map 1 → PaA is an acyclic cofibration since PaA is contractible, and hence lifts on the
left against any fibration. So given a fibration P ↠ PaA, there is a lift

1 P

PaA PaP

∼refla

and this lifting property enriches as follows: the map MapPaA(PaP, P ) → Prefla is a trivial
fibration. Now we can state the main theorem.
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Theorem. For any fibration P ↠ PaA over the based path space, the map below has a
section, which is called path-induction

MapPaA(PaA,P ) Prefla

evrefla

path-induction

This can be rephrased as the following theorem in homotopy type theory.

Theorem. For any family of types P depending on a point x ∈ A and a path p from a to x,
to prove ∏

x:A

∏
p:a=x

P (x, p),

it suffices to prove the case x is a and p is refla.

Holomorphic Floer Theory
Dusa McDuff, Barnard College

There is new exciting progress in symplectic geometry by Abouzaid, Blumberg, McLean and
Smith called holomorphic Floer theory. This works for genus zero J-holomorphic curves

(Σ, j)
hol−→ (M,J)

in some class A mod reparametrizations. There is a compact moduli space of solutions M̄.
We want to cut it down to something zero-dimensional and then count the number of things
in it. This moduli space isn’t amenable to that technique, so people use approximate solution
techniques instead. They build local models and get rational counts of the solutions.

However, the work of Abouzaid–Blumberg and Abouzaid–McLean–Smith has a totally dif-
ferent way of looking at it. They build a new model by taking a quotient of some Lie group.
This results in an orbifold, but a much nicer orbifold then in previous work. Namely, it
has an almost complex structure, which allows them do some homotopy theory. They use
homotopy theory to define invariants over Z/p instead of working over Q.

Multiplicative Structures in Higher Algebra
Arpon Raksit, Massachusetts Institute of Technology

A multiplication on a set X is a map X × X → X. To ask for it to be associative means
to require (ab)c = a(bc). The situation for spaces can be more subtle. Instead of asking for
our multiplication to be strictly associative, we may only ask that there exists a path from
a(bc) to (ab)c. Having such paths is called A2-structure.

There are five ways to parenthesize four elements, and once you fix a homotopy from a(bc)
to (ab)c, you get a pentagon:
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(ab)(cd)

((ab)c)d

(a(bc))d

a((bc)d)

a(b(cd))

Filling in the pentagon with a homotopy between these homotopies yields what is called A3-
structure. There is an infinite hierarchy A2, A3, A4, . . . of these structures, and their (co)limit
A∞ encodes that your multiplication is as associative as you wish.

For abelian groups, a multiplication on A is a map A⊗A → A, which gives a ring structure.
The analogous object in stable homotopy theory a multiplication on a spectrum S: a map
S ∧ S → S.

The fundamental example of a spectrum is the sphere spectrum S, which plays an analogous
role in stable homotopy theory to that of the integers Z in commutative algebra. It’s built
out of the spheres S0, S1, S2, . . . and is related to stable homotopy groups of spheres.

Once can assemble pushouts of the form

Sn Sn

Dn Sn/2,

2

along degree 2 maps Sn → Sn to get a quotient S/2 of the sphere spectrum. An old
theorem states S/2 admits no unital multiplication, in constrast to the case of Z/2. However,
Burklund proved the following just this year.

Theorem. S/8 admits an A∞-structure.

The proof uses the new theory of synthetic spectra. In general, the spectra S/pn have more
multiplicative structure as you increase the prime p and n.

Injectivity Radius
Ian Biringer, Boston College

Let X by higher rank, i.e. n ≥ 3, irreducible symmetric space equipped with Riemannian
metric that is invariant under SLn(R) action. Think X = SLn(R)/SO(n). Let M = X/Γ
where Γ acts on X by isometries and is properly discontinuous. If p ∈ M , define

injM(p) = 1
2
(length shortest essential loop in M at p)

Then, the main result of Fraczyk–Gelander is

Theorem. sup{injM(p)|p ∈ M} < ∞ if and only if M has finite volume.
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Note, if n = 2 in the case of H2, take infinite M with infinite holes and here we have infinite
volume, but can find loop with finite radius.

To prove the theorem, they use random walks and ergodic theory.

Translation Surfaces
Aaron Calderon, Yale University

A translation surface can be thought of in two ways, either as a riemann surface together
with a holomorphic 1-form, or as a singular euclidean surface with isolated cone points where
the angle is a multiple of 2π. The moduli space of all translation surfaces of a given genus
decomposes into strata. For example ΩM3(4) denotes the moduli space of holomorphic 1–
forms with a single zero of order 4 on surfaces of genus 3. Calderon attributed the following
informal conjecture to Kontsevich:

Conjecture. Components of strata are K(π, 1) spaces for ”some kind of mapping class
group”.

Some evidence for the conjecture is that it is true for hyperelliptic components. But it is
open in general.

An example: ΩM3(4) is a K(π, 1) for the right-angled Artin group based on E6. There is a
natural map

π1(ΩM3(4)) → MCG3,1

Waynryb showed this map has nontrivial kernel by exhibiting an element but without really
explaining why there is kernel.

Question. Why is there kernel?

Variations on Configuration Spaces
Jenny Wilson, University of Michigan

For a space X, one can form the ordered configuration space of k points in X:

Fk(X) = {(x1, . . . , xk) : xi ̸= xj for all i ̸= j} .

The quotient of Fk(X) by the action of the symmetric group Sk which permutes the k points
is the unordered configuration space

Bk(X) = {k-element subsets of X} .

An important example is the case X = R2, for which Bk(R2) (resp. Fk(R2)) is a K(π, 1)
for π the braid group (resp. pure braid group). Indeed, one can visualize loops in these
configuration spaces as (pure) braids. These spaces have also been studied in the case when
X is a manifold or a graph.
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One variation on this line of inquiry is to give X a metric and consider the configuration
space of (disjoint) discs of a fixed radius in X. Such problems blend questions of braiding and
sphere packing. Alpert–Manin studied this for the strip R×[0,W ] of width W and computed
the cohomology of the resulting configuration space. In-progress work of Wawrykow seeks
to understand these cohomology groups as Sk-representations.

Dusa McDuff mentioned that there are related problems concerning configuration spaces of
symplectically embedded balls of a fixed radius.

Counting Results on Surfaces
Tarik Aougab, Haverford College

Let S be a surface. A common type of result gives an asymptotic count of objects γ on S.
Here, the objects γ could be some type of curve, etc. Lots of these results were inspired by
the work of Maryam Mirzakhani. Then the general kind of theorem is:

Theorem. #{α ∈ MCG · γ| ℓ(α) ≤ L} ∼ CTopCXL
6g−6

where MCG · γ denotes orbits under the actions of the mapping class group, CTop is a
‘topological constant,’ CX is a ‘metric constant,’ and the 6g − 6 comes from Teichmuller
space.

One very general form of such a theorem is due to Rafi–Souto, where γ is a geodesic current,
also known as a filling current.

Also, everyone should read “Turning Coffee into Unions: Mathematicians and Collective
Bargaining” by Denis Hirschfeldt.

Higher Teichmüller theory
Sara Maloni, University of Virginia

Given a surface S, one can study the space of discrete faithful representations of π1(S) into
PSL(2,C), up to conjugacy. The interior of this space is the space of quasi-fuchsian surface
groups QF (S); Teichmüller space sits inside QF (S) in a natural way. The boundary is
described in a very satisfying way by the Ending Lamination Theorem. One would like to
have a similar theory for different Lie group targets. This is the subject of Higher Teichmüller
Theory. If the target is PSL(d,R) there is a natural subset of the space of representations
up to conjugacy called the Hitchin component. Perturbing into PSL(d,C) we obtain the
space of ”Quasi-Hitchin” representations, and one can ask about whether the space of such
representations has closure describable by something like an Ending Lamination Theorem.

Maloni also described the closely related notion of extended geometrically finite representa-
tions. Recently Weisman has proved a stability result for these representations.

Crazy Subgroups of Hyperbolic Groups
Genevieve Walsh, Tufts University
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Let G be a hyperbolic group. Then G acts geometrically (properly and co-compactly) on
some Gromov hyperbolic space X. For example if G is the fundamental group of a hyperbolic
3-manifold M we can take X to be H3. A subgroup H < G is quasi-convex if it acts
cocompactly on the convex hull of its limit set in ∂X.

There exist subgroups of hyperbolic 3-manifold groups which are not quasi-convex. For
example if M3 fibers over S1 and H is the fundamental group of the surface fiber, then H
is not quasi-convex. An emerging subfield led by Martelli, Italiano, and others seeks to find
other such examples of crazy subgroups of hyperbolic groups. One particular question is
whether these exist in one dimension higher:

Question. Does there exist a subgroup H = π1M
3 inside G = π1M

4 where ∂G is S3 and H
is not quasi-convex?
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