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This is a report on the panel discussion of the 58th Topology Festival at Cornell University,
which ran from May 5 to May 7, 2023. Each of the speakers was given approximately five
minutes to outline a particularly interesting recent result or an open problem in their field.
Summaries of their presentations follow.

Reported by: Colby Kelln, Nicki Magill, Nikhil Sahoo, Chaitanya Tappu, Morgan Weiler,
Chase Vogeli.

(∞, n)-categories in homotopy type theory
Paige North, University of Pennsylvania

An (∞, n)-category is a category with infinitely many levels of morphisms, in which any
morphism above level n is invertible. At the time of its inception, homotopy type theory
(HoTT) was hoped to be a framework to understand these higher categories, but this has
been difficult to realize.

Some examples of coherences that categories need to have are those which encode associa-
tivity. Given three composeable morphisms f , g, and h, we have h ◦ (g ◦ f) = (h ◦ g) ◦ f
(and this equality is encoded by the existence of a morphism one level higher). Given four
composeable morphisms f , g, h, and i, we have

i ◦ (h ◦ (g ◦ f)) = i ◦ ((h ◦ g) ◦ f) = · · · ,

and so on. One approach for higher categories, in analogy with simplicial sets, could be to
study functors ∆ → Type, but in HoTT these are ∞-functors, so the coherences are weak
themselves and this becomes very difficult/impossible.

Recently, augmentations to homotopy type theory which accomodate higher categories have
been proposed. The two-level type theory of Annenkov–Capriotti–Kraus–Sattler adds a sec-
ond notion of strict equality on top of the usual homotopy equivalence in HoTT. The (∞, 1)-
type theory of Riehl–Shulman adds in some additional syntax that allows one to speak of
simplex types ∆n and use these to identify types modelling higher categories. One question
which remains is what the minimal addition to HoTT to enable the study of higher categories
is.
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Rigidity of hyperbolic manifolds with piecewise totally geodesic boundary
Jean Lafont, Ohio State University

A closed hyperbolic manifold is the quotient Hn/Γ = Mn where Γ is a discrete group of
isometries of Hn without elliptics or parabolics. It is well known that there is a big difference
between n = 2 and n ≥ 3. For n = 2 and a genus g surface M2 = Σg, there are many
hyperbolic structures on Σg parametrized by Teichmüller space, whereas for n ≥ 3, the
hyperbolic structures are rigid by Mostow rigidity, that is, there is a unique hyperbolic
structure, which is determined by π1(M

n).

Question: What if we allow manifolds with piecewise totally geodesic boundary?

A result by Frigerio states that if there is a single totally geodesic piece in the boundary,
then the hyperbolic manifold is rigid.

We have the following recent result:

Theorem (Gustavo Chaparro-Sumalave). If n ≥ 6 and if there is a single bend in the
manifold then it is topologically rigid. That is, if Mn

1 and Mn
2 are two hyperbolic manifolds

with the same boundary and same fundamental group, then there is a homeomorphism
between them.

Topological Versus Smooth Unknotting of Spheres
Robert E. Gompf, University of Texas at Austin

Suppose K : S2 → R4 is a smooth embedding. If K is topologically unknotted, must it also
be smoothly unknotted? (Freedman showed that the sphereK being topologically unknotted
is equivalent to π1(R4 −K) ∼= Z, akin to the theorem of Papakyriakopoulos for knots in S3.)
If we only assume K is a locally flat embedding, must it be isotopic to a smooth embedding?
These are two examples of how little is known about the distinction between the topological
and smooth settings for knotted spheres. Even if we drop the unknottedness assumption,
we do not know of any smoothly knotted spheres in R4 that are topologically equivalent but
not smoothly equivalent.

But certain counterexamples are known if we allow more complicated surfaces or 4-manifolds.
In 1988, Finashin, Kreck and Viro described embeddings #10RP2 ↪→ R4 that are topologically
equivalent but not smoothly equivalent. Finashin improved this to embeddings #6RP2 ↪→ R4

in 2009. They distinguish the smoothly knotted surfaces by comparing two-fold branched
covers ramified along the surfaces, which end up being homeomorphic but not diffeomorphic.
Might the open questions above be approached using similar techniques?

Minimal Models of Toric Manifolds
Margaret Symington, Mercer University

We can consider the following inclusions:

{toric manifolds} ⊂ {symplectic manifolds} ⊂ {smooth manifolds}
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where symplectic manifolds are sitting inside smooth manifolds in a rather ”messy way.”
Real 4-dimensional toric manifolds are in correspondence with Delzant polygons. These
manifolds are S2 × S2 and CP 2#nCP 2 where the n ≥ 0 is the number of blow ups. In
4-dimensions, there are two minimal models, namely S2 × S2 and CP 2. These are minimal
models in the sense that all other examples can be obtained by blowing up the minimal
models. Alternatively, we can blow down any toric 4-manifold to one of these minimal
models.

Recently, in 2023, Pelayo and Santos showed that in 6-dimensions for Delzant polyhedra there
are not finitely many minimal models. In other words, there exist polyhedra corresponding
to toric 6-folds with arbitrarily many vertices and edges that can’t be blown down.

They also studied the moduli space of Delzant polyhedra. For the 2-dimensional polygons
corresponding to the 4-dimesnional toric manifolds, the moduli space of Delzant polygons
is simply connected. In contrast, for the 3-dimensional polyhedra corresponding to the 6-
dimensional toric manifolds, the moduli space is not simply connected.

Rigid group actions on manifolds
Thomas Haettel, IUT Montpellier

The groups we will be considering are lattices Γ ≤ SL(n,R), particularly for n ≥ 3, for
example Γ = SL(n,Z). There are natural actions of such Γ on Sn−1 and T n, which we will
write as Γ → Diff(Sn−1) and Γ → Diff(T n) to emphasize how Γ is acting, which begs the
following question:

Question (Zimmer). Are there other natural actions of lattices on manifolds?

What is known:

Theorem (Brown-Fisher-Hurtado ‘16, Brown-Damjanović-Zhang ‘18). Γ → Diff(Md) has
finite image for M a d-manifold under the hypothesis d < m− 1.

Theorem (Ghys ‘99, Burger-Monod ‘99). Γ → Homeo(S1) has a finite image.

Theorem (Lifschitz-Witte-Morris ‘04, Deroin-Hurtado ‘20). Γ → Homeo(R) has finite im-
age.

What is open:

• Is there a similar result for Γ → Homeo(R2)?

• Does there even exist an action of a lattice Γ → Homeo(R2)?

• Does there exist an action Γ → Diff(Σg) for g ≥ 2?

• What about analagous results for lattices in SL(n,Qp)?

• Does Γ having property (T) guarantee the existence of an action Γ → Homeo(R)?
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Uniqueness of splitting spheres
Maggie Miller, Stanford University

Here’s a theorem posted to the arXiv a few years ago:

Theorem (Budney–Gabai). There exist embeddings S3 ↪→ S3 ×S1 that are homotopic but
not isotopic to S3 × {pt}.

It seems reasonable to think that the above result may be useful in addressing the following
question:

Question. Are splitting spheres unique in dimension 4?

Here a splitting sphere is a sphere that splits a link. A link is a collection of (say 2)
codimension 2 spheres embedded in (say) S4. A sphere S3 ↪→ S4 is said to split a link L if
the two components of the link L are in different components of S4 \ S3.

The L-space conjecture for thin knots
Liam Watson, University of British Columbia

Let K be a knot. We use VK to denote its Jones polynomial, K̃h to denote its reduced
Khovanov homology, and χδ to denote its Euler characteristic with respect to the (δ =
q/2− h)-grading. We have:

det(K) = VK(−1) = χδ(K̃h(K)) ≤ dim K̃h(K).

A knot is thin if K̃h is supported in only one δ-grading, and for thin knots, the final inequality
above is an equality.

A group G is left-orderable if there exists ∅ ≠ P ⊂ G such that:

• P · P ⊂ P , and

• G = P ⨿ {1} ⨿ P−1.

(If G is countable, it is equivalent to ask that G acts on the line by homeomorphisms.)

Puzzle: if K is thin then it should not be possible to left-order π1(ΣK), where ΣK is the
2-fold branched cover of S3, branched along K.

Why should we expect this? Note that |H1(ΣK ;Z)| = det(K). Oszváth-Szabó have shown
that

|H1(ΣK ;Z)| ≤ dim ĤF (ΣK) ≤ dim K̃h(K),

meaning that when K is thin, the branched cover ΣK satisfies

|H1(ΣK ;Z)| = dim ĤF (ΣK),
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the condition defining the class of three-manifolds called L-spaces. The L-space conjec-
ture posits (among other things) that the fundamental groups of L-spaces are not left-
orderable. Thus solving the puzzle amounts to proving part of the L-space conjecture for
double branched covers of thin knots.

(Another way to think of the non-left-orderable fundamental groups as an expansion on the
class of finite finite groups. It is a measure of group smallness.)

Watanabe’s Disproof of the Smale Conjecture in Dimension 4
David Gay, University of Georgia

For any n, we can ask if the inclusion SO(n + 1) ↪→ Diff+(Sn) is a homotopy equivalence,
where SO(n + 1) acts on Sn in the usual manner (and Diff+ denotes orientation-preserving
diffeomorphisms). This is equivalent to Diff+

∂ (B
n) being contractible (where Diff+

∂ denotes
orientation-preserving diffeomorphisms that fix the boundary). In 1959, Smale initiated this
line of inquiry by showing that we indeed get a homotopy equivalence when n = 2. The case
of n = 3, which came to be known as the Smale conjecture, was proven by Hatcher in 1983.
It has also been shown that this result is false in all dimensions n ≥ 5, leaving only the case
of n = 4 open.

In 2018, Watanabe settled this final case by detecting nonzero elements of

Q⊗ πk−1

(
Diff+

∂ (B
4)
) ∼= Q⊗ πk

(
BDiff+

∂ (B
4)
)

for certain dimensions k ≥ 2 (e.g. for k = 2), which implies that Diff+
∂ (B

4) is contractible,
and so the inclusion SO(5) ↪→ Diff+(S4) is not a homotopy equivalence. Watanabe utilized
Kontsevich characteristic classes on B4-bundles over Sk that are valued in a Q-vector space
Ak generated by trivalent graphs, in order to define a morphism

Q⊗ πk

(
BDiff+

∂ (B
4)
)
→ Ak.

These characteristic classes are described in terms of configuration space integrals, which are
quite difficult to compute in practice. But Watanabe was able to pursue more computations
by a change in perspective, akin to viewing the cup product in terms of intersections instead
of integration of wedged forms. To prove surjectivity, he started with a directed trivalent
graph having no sinks or sources, and used the combinatorial data of the graph as gluing
instructions to build the desired bundle out of handles (motivated by clasper surgery).

The zeroth homotopy group π0

(
Diff+

∂ (B
4)
)
is isomorphic to the smooth (oriented) mapping

class group of S4. Whether this group is trivial remains an open question, but the speaker has
an explicit example of a diffeomorphism S4 → S4 that may not be isotopic to the identity,
which can be described by twisting in a neighborhood of a “half-unknotted Montesinos twin”
or by composing two diffeomorphisms between the double of the Mazur manifold and S4.

5


