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This is a report on the panel discussion of the 60th Topology Festival at Cornell University,
which ran from May 2 to May 4, 2025. Each of the speakers was given approximately 5
minutes to outline either a particularly interesting recent result, or an open problem in the
field. Summaries of their presentations follow.

Reported by: Isaac Broudy, Chase Vogeli, Colby Kelln, Conan Gillis, Kimball Strong

Cubulating manifolds
Jeremy Kahn, Brown University

Theorem. If M is a compact 3-dimensional manifold with π2(M) = 0, then M has finite
cover M̂ , with an embedded π1-injective, non-S

2, orientable surface.

By the Thurston-Hamilton-Perelman Geometrization of 3-manifolds We can cut M along
π1-injectively embedded surfaces, into geometric pieces.

If M is a closed hyperbolic 3-manifold, we have M ∼= H3/Γ for Γ < PSL2(C) a lattice. We
can cubulate M using surface subgroups and cut M into pieces using using cube complexes.

Question. Can we cubulate another, more general class of manifolds? Can we cubulate
hyperbolic 4-manifolds?

Finitely generated and torsion-free groups acting on surfaces
Kathryn Mann, Cornell University

Question. Is there an example of Γ finitely generated and torsion-free, which is not the
subgroup of Homeo(S), for some surface S?

Homeo(S) admits an action on the curve graph of S. We can understand the structure of
Homeo(S) via the dynamics of the action.

Definition. The curve graph of a surface, S, is a graph whose vertices are essential simple
closed curves in S (not taken up to isotopy) and edges defined by the relation of disjointness
of two curves. We denote the curve graph of S, C+(S)
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Theorem. Let Sg be a surface of genus g. For g ≥ 1, C+(Sg) is Gromov-hyperbolic.

Hyperbolicity in non-finitely generated groups
Nicholas Vlamis, City University of New York

Fact. Hyperbolic groups are nice and people like them. For evidence of niceness, hyperbolic
groups are finitely presented (and in fact are of type F∞), and have solvable word problem.

Question. Can the notion of some type of hyperbolicity be extended to non-finitely gener-
ated groups?

To define a hyperbolic group, one first restricts to considering finitely generated groups (if a
finitely generated group has a finite generating set with respect to which the Cayley graph
is δ-hyperbolic in the sense of Gromov, then we call the group a hyperbolic group). We could
weaken the assumption on our group of finite generation to, say, compact generation, and
the requirement on the generating set realizing hyperbolicity of the word metric to being
a compact generating set. The paper with the following result does this and characterizes
groups taht are amenable and hyperbolic in this generalized sense.

Theorem (Caprace-Cornulier-Monod-Tessera https://arxiv.org/abs/1202.3585). Let G be
a locally compact and compactly generated topological group. G is non-elementary hyperbolic
and amenable if and only if G ∼= H ⋊α Z or G ∼= H ⋊α R where α(1) is “compacting” and
H is noncompact.

Some context or analogy in the non-generalized hyperbolic group setting for this result can
come from considering the hyperbolic plane as the upper half space model. The stabilizer
of infinity inside the group of isometries of H2 is a non-elementary hyperbolic group that is
amenable and isomorphic to R⋊ R where the first factor comes from translation to the left
or right and the second factor comes from upward hyperbolic isometries. More generally, a
finitely generated hyperbolic group is amenable if and only if it is isomorphic to Z, so moving
into the world of compactly generated hyperbolicity makes the subclass of amenable groups
richer.

Geodesic Representatives of Isotopy Classes on Hyperbolic Manifolds
Macarena Arenas, Cambridge University

The following is well-known (cf. Do Carno’s textbook)

Theorem Given a hyperbolic (or, even, Reimanian) surface M , every free homotopy class
contains a minimally self-intersecting geodesic representative.
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Theorem (Scott + Agol) For some M as above, not every isotopy class has such a
geodesic representative.

Proof: Uses, among many other things, the Gauss-Bonnet theorem.

Manifolds and Probably Approximately Correct Learning
Damian Osajda, University of Wroclaw

We explore connections between PAC (Probably Approximately Correct) Learning Schemes
and Geometric Group Theory.

Definition (Valiant, 1984) H ⊆ Y X is PAC learnable if there exists a special type of
machine learning (i.e. probabilistic) algorithm corresponding to H.

Theorem (Brukhim, Carmon, Dinur, Moran, Yahudayoff, 2024) H is PAC learn-
able iff the DS dimension is finite. However, there exist PAC Learnable H’s with infinite
Natarajan dimension.

Proof: This uses the construction of a finite flag non-square simple pseudomanifold of large
dimension.

Telescopic purity for algebraic K-theory
Liam Keenan, Brown University

Work of Land–Mathew–Meier–Tamme, building on prior work of Clausen–Mathew–Naumann–
Noel, establishes the following “purity” theorem for telescopically localized algebraic K-
theory.

Theorem. For R and ring spectrum and n ≥ 0, the map

LT (n+1)K(R) → LT (n+1)K(LT (n)⊕T (n+1)R)

is an equivalence.

The telescopic localization functors LT (n) can be thought of as breaking a spectrum into its
“pieces,” and the effect of this theorem is that T (n)-local K-theory only sees the T (n) ⊕
T (n+ 1)-local piece.

An analogous result holds for the topological cyclic homology of connective ring spectra.

Theorem. For n ≥ 1, if a map A → B of connective ring spectra is a T (n)⊕T (n+1)-local
equivalence, then the induced map

LT (n+1)TC(A) → LT (n+1)TC(B)

is an equivalence.
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The proof of this theorem relies on comparing K-theory and topological cyclic homology via
the cyclotomic trace map K → TC.

Question. Is it possible to prove a purity result for TC without using K-theory?

New foundations for equivariant cohomology theories
Tyler Lawson, University of Minnesota

For G a finite group, there are several interesting kinds of G-equivariant cohomology in
practice: Borel cohomology, Bredon cohomology, Tate cohomology, etc. Whereas ordinary
cohomology theories are represented by spectra, equivariant cohomology theories are repre-
sented by objects known as G-spectra.

The issue is that the original construction of the G-stable homotopy category require keep-
ing track lots of data. For example, one starts by fixing a G-universe: a certain infinite-
dimensional real inner product space with a G-action by isometries. Different choices of
universe yield categories of G-spectra with different kinds of algebraic operations (called
transfers) in a way that is not readily apparent.

Recently, Clark Barwick along with his collaborators has set up new foundations for G-
spectra that are more efficient and flexible. One chooses directly which kinds of transfers
to encode and considers functors from a category parameterizing these transfers to spectra.
This formalism not only handles that case of equivariant stable homotopy theory, but also
motivic stable homotopy theory.

Bounded p-power torsion in unstable homotopy groups
Ishan Levy, University of Copenhagen

Unstable homotopy groups of spheres have some weird, interesting stuff. Here’s an example:
what’s πk(S

3) like, for k > 3? Well, it is a finitely generated abelian group, so to understand
it we need to understand its rationalization (which is trivial by some classical theorems) and
also understand it “p-locally” which is to say understand its localization at every prime p,
πk(S

3)(p).

Theorem. Let p be a prime number greater than 2, and k > 3. Then every nonzero element
of πk(S

3)(p) has order p.

[Selick] This is a little bit surprising - in the stable homotopy groups of spheres, there are
elements of arbitrarily high prime power order for any prime. Unstably, though, we have
bounds. In fact, this generalizes for higher dimensional spheres:

Theorem (Cohen-Moore-Neisendorfer). Let p be a prime number greater than 2. Then every
element of πk(S

2n+1)(p) has order at most pn.

Note that while these are stated for odd spheres, there is an odd-prime equivalence ΩS2n ≃
S2n−1 × ΩS4n−1, so the homotopy groups of even spheres are expressible in terms of odd
spheres. (There are slightly more complex but similarly-natured results 2-locally). Now, all
of this is related to this fascinating dichotomy in rational homotopy theory, which says that
a finite dimensional simply-connected CW -complex X must be either:
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• rationally elliptic, meaning that π∗(X)⊗Q is zero for sufficiently high dimension (equiv-
alently, is finite dimensional), or

• rationally hyperbolic, meaning that the dimensions of the vector spaces πk(X) ⊗ Q
grown exponentially in k.

Moore’s conjecture, which is still an open problem, asserts a tight connection between the
property of being rationally hyperbolic and having largre p-power torsion:

Conjecture (Moore). Let X be a finite dimensional simply connected CW complex. Then
the following are equivalent:

• X is rationally hyperbolic (see above)

• For some prime p, π∗(X)(p) has elements of arbitrarily high order (equivalently, no
power of p annihilates π∗(X))

• For all primes p, π∗(X)(p) has elements of arbitrarily high order (equivalently, no nat-
ural number annihilates π∗(X))

The computations with odd spheres above are an example where this is known to be true:
they do not satisfy bullet points 2 or 3; it is also known that the dimension of π∗(X)⊗Q is
1, so they are not rationally hyperbolic.

The periodicity theorem in chromatic homotopy theory
Irina Bobkova, Texas A&M University

In chromatic homotopy theory, the Morava K-theories K(n) are a collection of homology
theories with coefficient rings given by

K(n)∗ ∼= Fp[v
±
n ], |vn| = 2pn − 2.

The periodicity theorem of Hopkins–Ravenel–Smith states that these homology theories de-
tect periodic phenomena in a manner we now describe.

In what follows, let X be a finite CW complex. One can show that if the reduced K(n)-
homology of X vanishes, then so does its reduced K(n− 1)-homology. We say X has type n
if n is the smallest integer such that X has nonzero K(n)-homology.

Theorem. If X has type n, then there exists a map f : ΣdX → X for some d ≥ 0 such that
f induces an isomorphism

K(n)∗(Σ
dX)

∼=−→ K(n)∗(X).

The self-maps furnished by the periodicity theorem can be used to construct interesting
elements in the stable homotopy groups of spheres π∗S. If X has cells ranging in dimensions
from 0 to e, a self map f : ΣdX → X fits into a composite

Sd → ΣdX
f−→ X → Se

where the first map is the inclusion of the bottom d-dimensional cell of ΣdX, and the last
map quotients X outside of an e-dimensional cell. This composite determines a class in
πd−eS.
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